Filters
total: 483
Search results for: ANTENNA OPTIMIZATION
-
EM‐driven constrained miniaturization of antennas using adaptive in‐band reflection acceptance threshold
PublicationNumerical optimization of geometry parameters is a critical stage of the design process of compact antennas. It is also challenging because size reduction is constrained by the necessity of fulfilling imposed electrical performance requirements. Furthermore, full‐wave electromagnetic (EM) analysis needs to be used for reliable performance evaluation of the antenna structure, which is computationally expensive. In this paper, an...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Pareto Ranking Bisection Algorithm for EM-Driven Multi-Objective Design of Antennas in Highly-Dimensional Parameter Spaces
PublicationA deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial approximation of the Pareto set representing the best compromise between conflicting objectives is obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line segments interconnecting previously...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Influence of ESPAR Antenna Radiation Patterns Shape on PPCC-Based DoA Estimation Accuracy
PublicationIn the article, we show the influence of three different electronically steerable parasitic array radiator (ESPAR) antenna radiation patterns on the overall direction of arrival (DoA) estimation accuracy when power-pattern cross-correlation (PPCC) algorithm, relying on received signal strength (RSS) values, is used for the estimation. The ESPAR antenna designs were obtained for three optimization...
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublicationThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation
PublicationCost-efficient multi-objective design optimization of antennas is presented. The framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order...
-
Size reduction of ultra-wideband antennas with efficiency and matching constraints
PublicationAntenna design is a multifaceted task that involves handling of various performance figures concerning both electrical performance of the structure as well as its geometry. Simultaneous control of several objectives through rigorous optimization is very challenging and virtually impossible through conventional approaches such as parameter sweeping. In this work, we investigate size reduction of ultra‐wideband antenna structures...
-
Constrained optimization for generating gain-bandwidth design trade-offs of wideband unidirectional antennas
PublicationBroadband unidirectional antennas realised in microstrip technology find applications in many wireless communication systems. One of their design challenges is the necessity of handling multiple performance figures which is difficult when using traditional design methods, largely based on parameter sweeping. This work presents a simple optimisation-based framework that permits generation of gain-bandwidth trade-off designs for...
-
A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications
PublicationIn this work, a compact monopole antenna for broadband/multi-band and beyond ultra- wideband (UWB) communication has been proposed. The structure is based on a spline-enhanced radiator with a broadband feed and a modified ground plane. Rigorous design optimization of the radiator has been performed in a two-stage framework where optimization of the structure with respect to electrical performance is followed by explicit miniaturization...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
A Generalized SDP Multi-Objective Optimization Method for EM-Based Microwave Device Design
PublicationIn this article, a generalized sequential domain patching (GSDP) method for efficient multi-objective optimization based on electromagnetics (EM) simulation is proposed. The GSDP method allowing fast searching for Pareto fronts for two and three objectives is elaborated in detail in this paper. The GSDP method is compared with the NSGA-II method using multi-objective problems in the DTLZ series, and the results show the GSDP method...
-
Development of a Planar LTCC GRIN Lens for 60 GHz Open-Ended Waveguide Antenna
PublicationThis study deals with the design, realization and evaluation of a gradient index lens (GRIN) made of low-temperature cofired ceramic (LTCC) for millimeter-wave communication systems at a frequency of 60 GHz. The LTCC GRIN lens presented here utilizes a radial refractive index profile achieved by varying the dielectric properties within the LTCC structure by punching 100 µm holes in the green LTCC sheets. We present the optimization...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublicationIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublicationUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Nested Kriging with Variable Domain Thickness for Rapid Surrogate Modeling and Design Optimization of Antennas
PublicationDesign of modern antennas faces numerous difficulties, partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities (circular polarization, pattern diversity, band-notch operation), but also constraints imposed upon the physical size of the radiators. Conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction
PublicationThe employment of full-wave electromagnetic (EM) analysis is a practical necessity in the design of contemporary antenna structures. This is because simpler models are generally not available or of limited accuracy. At the same time, EM-based design is computationally expensive. Consequently, the ways of accelerating tasks such as parametric optimization or uncertainty quantification have to be sought. A possible workaround that...
-
Cost-Efficient Behavioral Modeling of Antennas by Means of Global Sensitivity Analysis and Dimensionality Reduction
PublicationComputational tools, particularly electromagnetic (EM) solvers, are now commonplace in antenna design. While ensuring reliability, EM simulations are time-consuming, leading to high costs associated with EM-driven procedures like parametric optimization or statistical design. Various techniques have been developed to address this issue, with surrogate modeling methods garnering particular attention due to their potential advantages....
-
Cost‐efficient performance‐driven modelling of multi‐band antennas by variable‐fidelity electromagnetic simulations and customized space mapping
PublicationElectromagnetic (EM) simulations have become an indispensable tool in the design of contemporary antennas. EM‐driven tasks, for example, parametric optimization, entail considerable computational efforts, which may be reduced by employing surrogate models. Yet, data‐driven modelling of antenna characteristics is largely hindered by the curse of dimensionality. This may be addressed using the recently reported domain‐confinement...
-
Low-Cost Quasi-Global Optimization of Expensive Electromagnetic Simulation Models by Inverse Surrogates and Response Features
PublicationConceptual design of contemporary high-frequency structures is typically followed by a careful tuning of their parameters, predominantly the geometry ones. The process aims at improving the relevant performance figures, and may be quite expensive. The reason is that conventional design methods, e.g., based on analytical or equivalent network models, often only yield rough initial designs. This is especially the case for miniaturized...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublicationSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
Series-Slot-Fed Circularly Polarized Multiple-Input-Multiple-Output Antenna Array Enabling Circular Polarization Diversity for 5G 28-GHz Indoor Applications
PublicationIn this paper, a four-element circularly polarized series-slot-fed multiple-input-multiple-output (MIMO) antenna array with circular polarization diversity is presented. The proposed design utilizes a combination of 45-degree inclined slots and a straight microstrip line feeding technique. The two antennas are designed to operate with the opposite sense of circular polarization (CP). CP is achieved by placing a patch of just about...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublicationIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Optimization of the Hardware Layer for IoT Systems using a Trust Region Method with Adaptive Forward Finite Differences
PublicationTrust-region (TR) algorithms represent a popular class of local optimization methods. Owing to straightforward setup and low computational cost, TR routines based on linear models determined using forward finite differences (FD) are often utilized for performance tuning of microwave and antenna components incorporated within the Internet of Things systems. Despite usefulness for design of complex structures, performance of TR methods...
-
Multi-Criterial Design of Antennas with Tolerance Analysis Using Response-Feature Predictors
PublicationImperfect manufacturing is one of the factors affecting the performance of antenna systems. It is particularly important when design specifications are strict and leave a minimum leeway for a degradation caused by geometry or material parameter deviations from their nominal values. At the same time, conventional antenna design procedures routinely neglect to take the fabrication tolerances into account, which is mainly a result...
-
Zero-Pole Approach in Microwave Passive Circuit Design
PublicationIn this thesis, optimization strategies for design of microwave passive structures including filters, couplers, antenna and impedance transformer and construction of various surroogate models utilized to fasten the design proces have been discussed. Direct and hybrid optimization methodologies including space mapping and multilevel algorithms combined with various surrogate models at different levels of fidelity have been utilized...
-
Expedited Gradient-Based Design Closure of Antennas Using Variable-Resolution Simulations and Sparse Sensitivity Updates
PublicationNumerical optimization has been playing an increasingly important role in the design of contemporary antenna systems. Due to the shortage of design-ready theoretical models, optimization is mainly based on electromagnetic (EM) analysis, which tends to be costly. Numerous techniques have evolved to abate this cost, including surrogate-assisted frameworks for global optimization, or sparse sensitivity updates for speeding up local...
-
Feedline Alterations for Optimization-Based Design of Compact Super-Wideband MIMO Antennas in Parallel Configuration
PublicationThis letter presents a technique for size reduction of wideband multiple-input-multiple-output (MIMO) antennas. Our approach is a two-stage procedure. At the first stage, the antenna structure is modified to improve its impedance matching. This is achieved through incorporation of an n-section tapered feedline, followed by reoptimization of geometry parameters. Reducing the maximum in-band reflection well beyond the acceptance...
-
Optimization-Based High-Frequency Circuit Miniaturization through Implicit and Explicit Constraint Handling: Recent Advances
PublicationMiniaturization trends in high-frequency electronics have led to accommodation challenges in the integration of the corresponding components. Size reduction thereof has become a practical necessity. At the same time, the increasing performance demands imposed on electronic systems remain in conflict with component miniaturization. On the practical side, the challenges related to handling design constraints are aggravated by the...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
Time-Gating method with automatic calibration for accurate measurements of electrically small antenna radiation patterns in Non-Anechoic environments
PublicationNon-anechoic sites represent a cheap alternative to measurements of antennas in dedicated facilities. However, due to a high noise—from the external EM signal sources and multipath interferences—the quality of radiation patterns obtained in non-anechoic conditions is poor. The characteristics can be corrected using a time-gating method (TGM), which involves filtering of the noise based on temporal analysis of the measured signals....
-
An Efficient Framework For Fast Computer Aided Design of Microwave Circuits Based on the Higher-Order 3D Finite-Element Method
PublicationIn this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in...
-
Strategies for feature-assisted development of topology agnostic planar antennas using variable-fidelity models
PublicationDesign of antennas for contemporary applications presents a complex challenge that integrates cognitive-driven topology development with the meticulous adjustment of parameters through rigorous numerical optimization. Nevertheless, the process can be streamlined by emphasizing the automatic determination of structure geometry, potentially reducing the reliance on traditional methods that heavily rely on engineering insight in the...
-
Ochrona odbiorników GNSS przed zakłóceniami celowymi
PublicationArtykuł dotyczy zastosowania algorytmów przestrzennego cyfrowego przetwarzania sygnałów dla potrzeb selektywnej eliminacji sygnałów zakłócających pracę odbiorników nawigacji satelitarnej GNSS. Omówiono podatność tych odbiorników na ataki elektroniczne typu zagłuszanie oraz spoofing. Polegają one na celowej emisji sygnałów niepożądanych w paśmie pracy systemu. Następnie przedstawiono koncepcję przeciwdziałania tego rodzaju zakłóceniom...
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublicationData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging
PublicationDesign of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations,...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublicationApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Versatile Unsupervised Design of Antennas Using Flexible Parameterization and Computational Intelligence Methods
PublicationDeveloping contemporary antennas is a challenging endeavor that requires considerable engineering insight. The most laborious stage is to devise an antenna architecture that delivers the required functionalities, e.g., multiband operation. Iterative by nature (hands-on topology modifications, parametric studies, trial-and-error geometry selection), it typically takes many weeks and requires considerable engagement from a human...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublicationThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Electromagnetic Simulation with 3D FEM for Design Automation in 5G Era
PublicationElectromagnetic simulation and electronic design automation (EDA) play an important role in the design of 5G antennas and radio chips. The simulation challenges include electromagnetic effects and long simulation time and this paper focuses on simulation software based on finite-element method (FEM). The state-of-the-art EDA software using novel computational techniques based on FEM can not only accelerate numerical analysis, but...
-
Performance-Driven Inverse/Forward Modeling of Antennas in Variable-Thickness Domains
PublicationDesign of contemporary antenna systems is a challenging endeavor. The difficulties are partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities, but also constraints imposed upon the physical size of the radiators. Furthermore, conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise dictated by reliability,...
-
A Novel Versatile Decoupling Structure and Expedited Inverse-Model-Based Re-Design Procedure for Compact Single-and Dual-Band MIMO Antennas
PublicationMultiple-input multiple-output (MIMO) antennas are considered to be the key components of fifth generation (5G) mobile communications. One of the challenges pertinent to the design of highly integrated MIMO structures is to minimize the mutual coupling among the antenna elements. The latter arises from two sources, the coupling in the free space and the coupling currents propagating on a ground plane. In this paper, an array of...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...