Filters
total: 166
Search results for: THERMOGRAVIMETRIC ANALYSIS
-
Synthesis, characterization and Luminescent Properties of New Coordination Polymers Based on p-tert Butylcalix[4]arene-tetracarboxylic acid and Lanthanine cations
PublicationA series of new coordination polymers based on p-tert-butylcalix[4]arene-tetracarboxylic acid with Eu3+, Tb3+wrer prepared by hydro and solvothermal methods. the obtained solid compounds were characterized by infrared and luminescence spectroscopy, powder X-ray diffraction, scianning electron microscopy and thermogravimetric anylisis. The infrared curves and the x-ray diffraction patterns indicate that the same crystalline structure...
-
High-temperature kinetics study of 430L steel powder oxidized in air at 600–850 °C
PublicationThe 430L stainless steel powder with a mean particle size of 95 μm was studied to determine its high-temperature oxidation properties. Continuous thermogravimetric measurements were carried out for 100 h in air at temperatures in the range of 600–850 °C. Even though a considerable amount of Cr (up to ˜5 wt.% Cr) inside the grains was depleted – especially inside small grains – no breakaway oxidation was observed. This indicates...
-
Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites
PublicationDue to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants...
-
High-temperature properties of titanium-substituted yttrium niobate
Publicationhe defect fluorite titanium-doped yttrium niobate samples Y3Nb1−xTixO7−δ have been synthesized and investigated by the means of high-temperature X-ray diffraction, dilatometry, and thermogravimetry. Thermal expansion coefficients (TECs) as well as chemical expansion coefficients for material with 5, 10, and 15 mol% of titanium were determined. All investigated samples exhibit chemical contraction caused by Ti doping. The values...
-
Hydrazinolysis Products of Selected Sugar Lactones—Crystal Structure and Microbiological Activity
PublicationCommercially available lactones, as well as those synthesized by us, turned out to be good substrates for the synthesis of sugar hydrazides. The exception was L-ascorbic acid, whose hydrazinolysis led to the formation of a hydrazinium salt, not the hydrazide as expected. The structure of all compounds was confirmed by NMR and X-ray analyses. The lower durability of hydrazinium L-ascorbate was additionally confirmed by thermogravimetric...
-
Characterization of volatile compounds, structural, thermal and physico-mechanical properties of cross-linked polyethylene foams degraded thermo-mechanically at variable times
PublicationWaste cross-linked polyethylene foam (wXLPE) was thermo-mechanically degraded at variable time using internal batch mixer. The progress of wXLPE degradation has been investigated by using a simultaneous thermogravimetric/differential scanning calorimetry analyzer coupled with Fourier transform infrared spectroscopy, swelling measurements, tensile tests and scanning electron microscopy. Volatile organic compounds generated during...
-
To what extent can hyperelastic models make sense the effect of clay surface treatment on the mechanical properties of elastomeric nanocomposites?
PublicationThe poor knowledge about nonlinear mechanical behavior of elastomer nanocomposites arises from the incomplete information on the interface. Application of hyperelastic models provides more insights into the nature and the situation of interaction between the elastomeric matrix and nanofillers. The current work seeks to address the effect of interphase strength on tensile properties of the elastomer nanocomposites under large deformations....
-
Thermal decomposition kinetics of dynamically vulcanized polyamide 6-acrylonitrile butadiene rubber-halloysite nanotube nanocomposites
PublicationThermally stable thermoplastic elastomer nanocomposites based on polyamide 6 (PA6), acrylonitrile butadiene rubber (NBR), and halloysite nanotubes (HNTs) were dynamically vulcanized, and their nonisothermal decomposition kinetics were examined. The Friedman, Kissinger–Akahira–Sunose (KAS), Ozawa–Wall–Flynn (FWO), and modified Coats–Redfern (m‐CR) isoconversional models were used to obtain information about the kinetics of the thermal...
-
Proton transfer and hydrogen bonds in supramolecular, self-assembled structures of imidazolium silanethiolates. X-ray, spectroscopic and theoretical studies
PublicationThe reaction of 1-methylimidazole, 2-ethyl-4-methylimidazole and 2-ethylimidazole with tris(2,6- diisopropylphenoxy)silanethiol (TDST) leads to the formation of three new salts, which have been characterized by elemental analyses, thermogravimetric analyses, FTIR spectroscopy, and their structures were determined by single-crystal X-ray diffraction. Structural analyses indicate that in all three compounds a proton transfer has...
-
Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin
PublicationThree porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity....
-
Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles
PublicationA promising strategy for overcoming the problem of limited efficacy in antitumor drug delivery and in drug release is the use of a nanoparticle-conjugated drug. Doxorubicin (Dox) anticancer chemotherapeutics has been widely studied in this respect, because of severe cardiotoxic side effects. Here, we investigated the cytotoxic effects, the uptake process, the changes in cell cycle progression and the cell death processes in the...
-
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
PublicationThe study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically...
-
Characteristics of LaCo 0.4 Ni 0.6-x Cu x O 3-δ ceramics as a cathode material for intermediate-temperature solid oxide fuel cells
PublicationIn this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x ≤ 0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation...
-
Tailoring diamondised nanocarbon-loaded poly(lactic acid) composites for highly electroactive surfaces: extrusion and characterisation of filaments for improved 3D-printed surfaces
PublicationA new 3D-printable composite has been developed dedicated to electroanalytical applications. Two types of diamondised nanocarbons - detonation nanodiamonds (DNDs) and boron-doped carbon nanowalls (BCNWs) - were added as fillers in poly(lactic acid) (PLA)-based composites to extrude 3D filaments. Carbon black served as a primary filler to reach high composite conductivity at low diamondised nanocarbon concentrations (0.01 to 0.2...
-
Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review
PublicationPolylactic acid (PLA) and polyhydroxybutyrate (PHB) are two biopolyesters obtained from renewable resources like corn or sugar under bacterial fermentation. PLA is the most widely used biopolymer in diverse applications. Addition of PHB to PLA can improves the crystallinity of PLA, and thereby its mechanical strength. However, both PLA and PHB suffer from poor thermal stability, which limits their potential industrial application....
-
Praseodymium Orthoniobate and Praseodymium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties
PublicationIn this paper, the structural properties and the electrical conductivity of La1−xPrxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) and PrNbO4+δ are presented and discussed. All synthesized samples crystallized in a monoclinic structure with similar thermal expansion coefficients. The phase transition temperature between the monoclinic and tetragonal structure increases with increasing praseodymium content from 500 ◦C for undoped...