Filters
total: 12
Search results for: ALGORYTM UCZENIA
-
Weighted sequential classifier
PublicationZaproponowano wieloklasowe ważone kryterium Fishera i uzasadniono potrzebę jego wprowadzenia. Na bazie tego kryterium skonstruowano sekwencyjny algorytm uczenia klasyfikatora. Przedstawiono wyniki eksperymentów.
-
Jak wykraść złoto smokowi? - uczenie ze wzmocnieniem w świecie Wumpusa
PublicationNiniejszy rozdział zawiera łagodne wprowadzenie do problematyki uczenia ze wzmocnieniem, w którym podstawy teoretyczne wyjaśniane są na przykładzie przewodnim, jakim jest zagadnienie nauczenia agenta poruszania się w świecie potwora o imieniu Wumpus (ang. Wumpus world), klasycznym środowisku do testowania logicznego rozumowania agentów (problem nietrywialny dla algorytmów uczenia ze wzmocnieniem). Przedstawiona jest główna idea...
-
Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową
PublicationPodstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....
-
Sequential classification.
PublicationOpisano uogólniony algorytm konstrukcji klasyfikatora sekwencyjnego. Uogólnienie polega na tym, że zbiór klas dzielimy na dwie grupy zamiast oddzielania po jednej klasie w każdym kroku uczenia klasyfikatora. Eksperymenty potwierdzały lepsze własności klasyfikatora.
-
Neural Network - Based Parameters Estimations Of Induction Motors
PublicationW artykule przedstwaiono algorytmy estymacji rezystancji wirnika i indukcyjności wzajemnej w zamkniętym układzie sterowania prędkości silnika indukcyjnego klatkowego. Do wyznaczenia rezystancji wykorzystano algorytm oparty na porównaniu modelu napięciowego i prądowego silnika. Do wyznaczania indukcyjności wykorzystano, znaną z literatury, zależność modelu multiskalarnego. Wyznaczane w stanie ustalonym parametry zapisywane są w...
-
przyrostowa metoda budowy hierarchicznej sieci neuronowej dla przewidywania sekwencji znakowych
PublicationZaprezentowano sposób wykorzystania hierarchicznej, opartej na przewidywaniu sieci neuronowej do nauki (bez nadzoru) oraz rozpoznawania sekwencji znaków w wejściowym strumieniu tekstu. Dla powyższej struktury zaproponowano algorytm jej przyrostowej rozbudowy w miarę zapamiętywania sekwencji pozwalający na optymalizację procesu uczenia oraz ograniczenie wymagań pamięciowych prezentowanego rozwiązania. Wskazano również jej możliwe...
-
Identyfikacja dźwięków serca za pomocą algorytmu LPC oraz sztucznej sieci neuronowej.
PublicationW artykule przedstawiono algorytm klasyfikacji sygnału fonokardiograficznego, który umożliwia skuteczną identyfikację 12 różnych stanów. Poprzez połączenie ze sobą algorytmu kodowania liniowego (LPC) wraz ze sztuczną siecią neuronową uzyskano skuteczność klasyfikacji sięgającą 82% oraz pełną skuteczność w rozróżnieniu pomiędzy stanami: braku lub występowania schorzenia. Najlepsze rezultaty uzyskano dla jednokierunkowych, dwuwarstwowych...
-
Investigation of Noise-Induced Instabilities in Quantitative BiologicalSpectroscopy and Its Implications for Noninvasive Glucose Monitoring
PublicationPrzedstawiono sposób oceny błędów jakie pojawiają się przy estymacji poziomu glukozy we krwi za pomocą pomiarów widm Ramana. Zastosowano nieliniowy algorytm regresji według maszyny wektorów nośnych. Określono jak na wyznaczenie stężenia glukozy we krwi wpływają błędy pomiarów widmach Ramana oraz błędów pomiaru referencyjnego stężenia glukozy podczas etapu kalibracji modelu (etapu uczenia algorytmu maszyny wektorów nośnych). Określono...
-
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
PublicationPomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak...
-
Automatyzacja procesu rehabilitacji dzieci z paralysis cerebralis infantium oraz osteogenesis imperfecta
PublicationCelem prac badawczych będących tematem dysertacji jest opracowanie podstaw metodologicznych dla automatycznej platformy eksperckiej asystującej podczas procesu rehabilitacji dzieci chorych na paralysis cerebralis infantium oraz osteogenesis imperfecta. Przedstawione cele rozprawy do realizacji wymagały podejścia wieloetapowego, w którym wykonano szereg prac związanych m.in. z: gromadzeniem odpowiednich danych, selekcją efektywnych...
-
Detekcja warunków LOS i NLOS w środowisku wewnątrz budynkowym przy użyciu algorytmu głębokiego uczenia
PublicationW środowisku wewnątrzbudynkowym występuje wiele czynników negatywnie wpływających na transmitowane sygnały. Niniejszy artykuł przedstawia metodę opartą na koncepcji głębokich sieci neuronowych, służącą do detekcji warunków LOS i NLOS w środowisku wewnątrzbudynkowym. Algorytm opracowany i przetestowany został na podstawie pomiarów sygnałów UWB przeprowadzonych w rzeczywistym środowisku wewnątrzbudynkowym.
-
Piotr Szczuko dr hab. inż.
PeoplePiotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...