Filters
total: 9
Search results for: GFET
-
Electrical characteristics simulation of top-gated graphene field-effect transistor (GFET) with 10 μm x 10 μm graphene channel
Open Research DataThe presented data set is part of the research on graphene field-effect transistor (GFET) modelling. The calculations were performed with the use of GFET Tool program (https://nanohub.org/resources/gfettool DOI: 10.4231/D3QF8JK5T), which enabled simulation of the drain current (Id) vs. drain voltage (Vd) characteristics for different gate voltages (Vg)...
-
Electrical characteristics simulation of top-gated graphene field-effect transistor (GFET) with 10 μm x 3 μm graphene channel
Open Research DataThe presented data set is part of the research on graphene field-effect transistor (GFET) modelling. The calculations were performed with the use of GFET Tool program (https://nanohub.org/resources/gfettool DOI: 10.4231/D3QF8JK5T), which enabled simulation of the drain current (Id) vs. drain voltage (Vd) characteristics for different gate voltages (Vg)...
-
RECENT ADVANCES IN GRAPHENE APPLICATION FOR ELECTRONIC SENSING
PublicationThe great interest in graphene is caused by its potential for constructing various sensors exhibiting excellent parameters. The high carrier mobility and the unique band structure of graphene makes it promising especially in the field-effect transistors (GFET) applications. In this article, recent advances of the selected graphene-based sensor applications were presented and the possible directions for further investigations were...
-
The behavioural model of graphene field-effect transistor
PublicationThe behavioural model of a graphene field-effect transistor (GFET) is proposed. In this approach the GFET element is treated as a “black box” with only external terminals available and without considering the physical phenomena directly. The presented circuit model was constructed to reflect steady-states characteristics taking also into account GFET capacitances. The authors’ model is defined by a relatively small number of equations...
-
Modelling of Graphene Field-Effect Transistor for lectronic sensing applications
PublicationA top-gated Graphene Field-Effect Transistor (GFET) suitable for electronic sensing applications was modelled. The applied simulation method reproduces correctly the output transfer GFET characteristics and allows to investigate doping effect caused by different physical, chemical or biological factors. The appearance of additional charge in the system results in the shift of the current-voltage characteristic. This feature could...
-
Pulsed UV-irradiated Graphene Sensors for Ethanol Detection at Room Temperature
PublicationA graphene-based gas sensor fabricated in a FET (GFET) configuration and its sensitivity towards ethanol and methane is reported. Detection of ethanol at the level of 100 ppm was observed under pulsed UV irradiation and after cleaning by UV light in the N2 ambient. Reduction of the frequency of UV irradiation pulses resulted in increased changes in sensor resistance in the presence of ethanol. Improved sensing behavior was ascribed...
-
Graphene field-effect transistor application for flow sensing
PublicationMicroflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall...
-
Electrical and noise responses of graphene back-gated field-effect transistors enhanced by UV light for organic vapors sensing
Open Research DataBack-gated field-effect transistors with graphene channels (GFETs) were investigated toward organic vapors sensing. Two methods were used for sensing experiments including DC characteristics measurements and fluctuation-enhanced sensing by low-frequency noise studies. The data set consists of raw and modified data on GFET responses to acetonitrile,...
-
Organic Vapor Sensing Mechanisms by Large-Area Graphene Back-Gated Field-Effect Transistors under UV Irradiation
PublicationThe gas sensing properties of graphene back-gated field-effect transistor (GFET) sensors toward acetonitrile, tetrahydrofuran, and chloroform vapors were investigated with the focus on unfolding possible gas detection mechanisms. The FET configuration of the sensor device enabled gate voltage tuning for enhanced measurements of changes in DC electrical characteristics. Electrical measurements were combined with a fluctuation-enhanced...