Filters
total: 167
Search results for: INTRACRANIAL EEG (IEEG)
-
Independent dynamics of slow, intermediate, and fast intracranial EEG spectral activities during human memory formation
PublicationA wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various low and high frequencies are spatiotemporally coordinated across the human brain during memory processing is inconclusive. They can either be coordinated together across a wide range of the frequency spectrum or induced in specific bands. We used a large dataset of human intracranial electroencephalography...
-
Independent dynamics of slow, intermediate, and fast intracranial EEG spectral activities during human memory formation
Publication -
Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation
PublicationA wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial...
-
Intracranial electrophysiological recordings from the human brain during memory tasks with pupillometry
PublicationData comprise intracranial EEG (iEEG) brain activity represented by stereo EEG (sEEG) signals, recorded from over 100 electrode channels implanted in any one patient across various brain regions. The iEEG signals were recorded in epilepsy patients (N=10) undergoing invasive monitoring and localization of seizures when they were performing a battery of four memory tasks lasting approx. 1 hour in total. Gaze tracking on the task...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Behavioral state classification in epileptic brain using intracranial electrophysiology
PublicationOBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode...
-
A Computationally Efficient Model for Predicting Successful Memory Encoding Using Machine-Learning-based EEG Channel Selection
PublicationComputational cost is an important consideration for memory encoding prediction models that use data from dozens of implanted electrodes. We propose a method to reduce computational expense by selecting a subset of all the electrodes to build the prediction model. The electrodes were selected based on their likelihood of measuring brain activity useful for predicting memory encoding better than chance (in terms of AUC). A logistic...
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublicationIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_004)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_005)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_002)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_003)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0010)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0012)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_008)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_007)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_006)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0011)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_009)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0017)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0021)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0020)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0019)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0024)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Invasive electrophysiological patient recordings from the human brain during memory tasks with pupilometry (MC_0023)
Open Research DataData comprise intracranial EEG (iEEG) brain activity, including electrocorticography (ECoG) signals, recorded from over 100 electrodes implanted in one patient throughout various brain regions. These iEEG signals were recorded in epilepsy patients undergoing invasive monitoring and localization of seizures when they were performing a battery of four...
-
Direct electrical stimulation of the human brain has inverse effects on the theta and gamma neural activities
PublicationObjective: Our goal was to analyze the electrophysiological response to direct electrical stimulation (DES) systematically applied at a wide range of parameters and anatomical sites, with particular focus on neural activities associated with memory and cognition. Methods: We used a large set of intracranial EEG (iEEG) recordings with DES from 45 subjects with electrodes...
-
Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding
PublicationBACKGROUND: We sought to determine if ripple oscillations (80-120 Hz), detected in intracranial electroencephalogram (iEEG) recordings of patients with epilepsy, correlate with an enhancement or disruption of verbal episodic memory encoding. METHODS: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the...
-
Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone
PublicationOBJECTIVE: To investigate the generation, spectral characteristics, and potential clinical significance of brain activity preceding interictal epileptiform spike discharges (IEDs) recorded with intracranial EEG. METHODS: Seventeen adult patients with drug-resistant temporal lobe epilepsy were implanted with intracranial electrodes as part of their evaluation for epilepsy surgery. IEDs detected on clinical macro- and research microelectrodes...
-
Electrical Stimulation Modulates High Gamma Activity and Human Memory Performance
PublicationDirect electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation...
-
Reactivation of seizure‐related changes to interictal spike shape and synchrony during postseizure sleep in patients
PublicationOBJECTIVE: Local field potentials (LFPs) arise from synchronous activation of millions of neurons, producing seemingly consistent waveform shapes and relative synchrony across electrodes. Interictal spikes (IISs) are LFPs associated with epilepsy that are commonly used to guide surgical resection. Recently, changes in neuronal firing patterns observed in the minutes preceding seizure onset were found to be reactivated during postseizure...
-
Balance recognition on the basis of EEG measurement.
PublicationAlthough electroencephalography (EEG) is not typically used for verifying the sense of balance, it can be used for analysing cortical signals responsible for this phenomenon. Simple balance tasks can be proposed as a good indicator of whether the sense of balance is acting more or less actively. This article presents preliminary results for the potential of using EEG to balance sensing....
-
Metody redukcji artefaktów w zapisie EEG.
PublicationPrzegląd i opis metod badania EEG jego uwarunkowań technicznych oraz problemy z tym związane. Dokonano przeglądu metod pozwalających na zredukowanie bądź eliminacje artefaktów w zapisie EEG.
-
Labeler-hot Detection of EEG Epileptic Transients
PublicationPreventing early progression of epilepsy and sothe severity of seizures requires effective diagnosis. Epileptictransients indicate the ability to develop seizures but humansoverlook such brief events in an electroencephalogram (EEG)what compromises patient treatment. Traditionally, trainingof the EEG event detection algorithms has relied on groundtruth labels, obtained from the consensus...
-
Comparison of the effectiveness of automatic EEG signal class separation algorithms
PublicationIn this paper, an algorithm for automatic brain activity class identification of EEG (electroencephalographic) signals is presented. EEG signals are gathered from seventeen subjects performing one of the three tasks: resting, watching a music video and playing a simple logic game. The methodology applied consists of several steps, namely: signal acquisition, signal processing utilizing z-score normalization, parametrization and...
-
Tensor Decomposition for Imagined Speech Discrimination in EEG
PublicationMost of the researches in Electroencephalogram(EEG)-based Brain-Computer Interfaces (BCI) are focused on the use of motor imagery. As an attempt to improve the control of these interfaces, the use of language instead of movement has been recently explored, in the form of imagined speech. This work aims for the discrimination of imagined words in electroencephalogram signals. For this purpose, the analysis of multiple variables...
-
Decoding imagined speech for EEG-based BCI
PublicationBrain–computer interfaces (BCIs) are systems that transform the brain's electrical activity into commands to control a device. To create a BCI, it is necessary to establish the relationship between a certain stimulus, internal or external, and the brain activity it provokes. A common approach in BCIs is motor imagery, which involves imagining limb movement. Unfortunately, this approach allows few commands. As an alternative, this...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublicationEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion
PublicationThe classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications....
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublicationThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
Brain-computer interaction based on EEG signal and gaze-tracking information = Analiza interackji mózg-komputer wykorzystująca sygnał EEg i informacje z systemu śledzenia punktu fiksacji wzroku
PublicationThe article presents an attempt to integrate EEG signal analysis with information about human visual activities, i.e. gaze fixation point. The results from gaze-tracking-based measurement were combined with the standard EEG analysis. A search for correlation between the brain activity and the region of the screen observed by the user was performed. The preliminary stage of the study consists in electrooculography (EOG) signal processing....
-
Automatic Clustering of EEG-Based Data Associated with Brain Activity
PublicationThe aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain....
-
Deep learning approach on surface EEG based Brain Computer Interface
PublicationIn this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...
-
Rough Set-Based Classification of EEG Signals Related to Real and Imagery Motion
PublicationA rough set-based approach to classification of EEG signals registered while subjects were performing real and imagery motions is presented in the paper. The appropriate subset of EEG channels is selected, the recordings are segmented, and features are extracted, based on time-frequency decomposition of the signal. Rough set classifier is trained in several scenarios, comparing accuracy of classification for real and imagery motion....
-
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
PublicationQuantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublicationA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
CLINICAL EEG AND NEUROSCIENCE
Journals -
Comparison of Methods for Real and Imaginary Motion Classification from EEG Signals
PublicationA method for feature extraction and results of classification of EEG signals obtained from performed and imagined motion are presented. A set of 615 features was obtained to serve for the recognition of type and laterality of motion using 8 different classifications approaches. A comparison of achieved classifiers accuracy is presented in the paper, and then conclusions and discussion are provided. Among applied algorithms the...