Search results for: OUTLIER DETECTION
-
Outlier Detection with the Use of Isolation Forests
Publication -
Outlier detection method by using deep neural networks
PublicationDetecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....
-
Smooth least absolute deviation estimators for outlier-proof identification
PublicationThe paper proposes to identify the parameters of linear dynamic models based on the original implementation of least absolute deviation estimators. It is known that the object estimation procedures synthesized in the sense of the least sum of absolute prediction errors are particularly resistant to occasional outliers and gaps in the analyzed system data series, while the classical least squares procedure unfortunately becomes...
-
Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance Evaluation
PublicationTo date, significant progress has been made in the field of railway anomaly detection using technologies such as real-time data analytics, the Internet of Things, and machine learning. As technology continues to evolve, the ability to detect and respond to anomalies in railway systems is once again in the spotlight. However, railway anomaly detection faces challenges related to the vast infrastructure, dynamic conditions, aging...
-
Respiratory Rate Estimation Based on Detected Mask Area in Thermal Images
PublicationThe popularity of non-contact methods of measuring vital signs, particularly respiratory rate, has increased during the SARS-COV-2 pandemic. Breathing parameters can be estimated by analysis of temperature changes observed in thermal images of nostrils or mouth regions. However, wearing virus-protection face masks prevents direct detection of such face regions. In this work, we propose to use an automatic mask detection approach...
-
Robust unsupervised georeferencing algorithm for aerial and satellite imagery
PublicationIn order to eliminate a human factor and fully automate the process of embedding the spatial localization information in a remote sensed image the integrated georeferencing method was proposed. The paper presents this unsupervised and robust approach which is comprised of pattern recognition, using SIFT-based detector, and RANSAC based outlier removal with matching algorithm.
-
Active feedback noise control in the presence of impulsive disturbances
PublicationThe problem of active feedback control of a narrowband acoustic noise in the presence of impulsive disturbances is considered. It is shown that, when integrated with appropriately designed outlier detector, the proposed earlier feedback control algorithm called SONIC is capable of isolating and rejecting noise pulses. According to our tests this guarantees stable and reliable operation of the closed-loop noise cancelling...
-
Empirical analyses of robustness of the square Msplit estimation
PublicationThe paper presents Msplit estimation as an alternative to methods in the class of robust M-estimation. The analysis conducted showed that Msplit estimation is highly efficient in the identification of observations encumbered by gross errors, especially those of small or moderate values. The classical methods of robust estimation provide then unsatisfactory results. Msplit estimation also shows high robustness to single gross errors...
-
Depth Images Filtering In Distributed Streaming
PublicationIn this paper, we propose a distributed system for point cloud processing and transferring them via computer network regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid, Radial Outliner Remover, Statistical Outlier Removal and Pass Through....
-
DEPTH IMAGES FILTERING IN DISTRIBUTED STREAMING
PublicationIn this paper we discuss the comparison of point cloud filters focusing on their applicability for streaming optimization. For the filtering stage within a stream pipeline processing we evaluate three filters: Voxel Grid, Pass Through and Statistical Outlier Removal. For the filters we perform series of the tests aiming at evaluation of changes of point cloud size and transmitting frequency (various fps ratio). We propose a distributed...
-
The Proposal to “Snapshot” Raim Method for Gnss Vessel Receivers Working in Poor Space Segment Geometry
PublicationNowadays, we can observe an increase in research on the use of small unmanned autonomous vessel (SUAV) to patrol and guiding critical areas including harbours. The proposal to “snapshot” RAIM (Receiver Autonomous Integrity Monitoring) method for GNSS receivers mounted on SUAV operating in poor space segment geometry is presented in the paper. Existing “snapshot” RAIM methods and algorithms which are used in practical applications...
-
Fuzzy Divisive Hierarchical Clustering of Solvents According to Their Experimentally and Theoretically Predicted Descriptors
PublicationThe present study describes a simple procedure to separate into patterns of similarity a large group of solvents, 259 in total, presented by 15 specific descriptors (experimentally found and theoretically predicted physicochemical parameters). Solvent data is usually characterized by its high variability, dierent molecular symmetry, and spatial orientation. Methods of chemometrics can usefully be used to extract and explore accurately...
-
Detection of impulsive disturbances in archive audio signals
PublicationIn this paper the problem of detection of impulsive disturbances in archive audio signals is considered. It is shown that semi-causal/noncausal solutions based on joint evaluation of signal prediction errors and leave-one-out signal interpolation errors, allow one to noticeably improve detection results compared to the prediction-only based solutions. The proposed approaches are evaluated on a set of clean audio signals contaminated...