displaying 1000 best results Help
Search results for: fractional differential equation
-
Systems of Nonlinear Fractional Differential Equations
PublicationUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives D(T)(q)x and D(T)(q)y. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.
-
Boundary problems for fractional differential equations
PublicationIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Fractional differential equations with causal operators
PublicationWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
Fractional differential equations with deviating arguments
PublicationDla równań różniczkowych typu ułamkowego, zostały podane warunki dostateczne na istnienie jednego rozwiązania lub rozwiazań ekstremalnych. Nierówności różniczkowe są też doskutowane.
-
Positive solutions to advanced fractional differential equations with nonlocal boundary conditions
PublicationWe study the existence of positive solutions for a class of higher order fractional differential equations with advanced arguments and boundary value problems involving Stieltjes integral conditions. The fixed point theorem due to Avery-Peterson is used to obtain sufficient conditions for the existence of multiple positive solutions. Certain of our results improve on recent work in the literature.
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublicationIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Existence results to delay fractional differential equations with nonlinear boundary conditions
PublicationPraca dotyczy problemów brzegowych dla ułamkowych równań różniczkowych z opóźnionym argumentem. Podano warunki dostateczne na istnienie rozwiązań ekstremalnych takich zagadnień.
-
Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative
PublicationBadano równania neutralne typu ułamkowego z odchylonym argumentem. Podano warunki dostateczne na istnienie jednego rozwiązania.
-
Fractional Differential Calculus
Journals -
Successive Iterative Method for Higher-Order Fractional Differential Equations Involving Stieltjes Integral Boundary Conditions
PublicationIn this paper, the existence of positive solutions to fractional differential equations with delayed arguments and Stieltjes integral boundary conditions is discussed. The convergence of successive iterative method of solving such problems is investigated. This allows us to improve some recent works. Some numerical examples illustrate the results.
-
Point to point control of fractional differential linear control systems
Publication -
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...
-
Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method
Publication -
Variable Order Differential Models of Bone Remodelling * *This work was supported by FCT, through IDMEC, under LAETA, projects UID/EMS/50022/2013, BoneSys, joint Polish-Portuguese project Modelling and controlling cancer evolution using fractional calculus, PERSEIDS (PTDC/EMS-SIS/0642/2014) and IF/00653/2012
Publication -
Discrete and continuous fractional persistence problems – the positivity property and applications
PublicationIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Dataset of phase portraits of the fractional prey-predator model with Holling type-II interaction (without predator harvesting)
Open Research DataThe need for a fractional generalization of a given classical model is often due to new behaviors which cannot be taken into account by the model. In this situation, it can be useful to look for a fractional deformation of the initial system, trying to fit the fractional exponent of differentiation in order to catch properly the data.
-
Fractional problems with advanced arguments
PublicationThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
An facile Fortran-95 algorithm to simulate complex instabilities in three-dimensional hyperbolic systems
Open Research DataIt is well know that the simulation of fractional systems is a difficult task from all points of view. In particular, the computer implementation of numerical algorithms to simulate fractional systems of partial differential equations in three dimensions is a hard task which has no been solved satisfactorily. Here, we provide a Fortran-95 code to solve...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Fractional-order Systems and Synchronous Generator Voltage Regulator
PublicationModern regulators of synchronous generators, including voltage regulators, are digital systems, in their vast majority with standard structures contained in the IEEE standard. These are systems described with stationary differential equations of integral order. Differential equations of fractional order are not employed in regulators for synchronous generator control. This paper presents an analysis of the possibilities of using...
-
Numerical solution of fractional neutron point kinetics in nuclear reactor
PublicationThis paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublicationThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
Numerical solution analysis of fractional point kinetics and heat exchange in nuclear reactor
PublicationThe paper presents the neutron point kinetics and heat exchange models for the nuclear reactor. The models consist of a nonlinear system of fractional ordinary differential and algebraic equations. Two numerical algorithms are used to solve them. The first algorithm is application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. The second involves building an analog scheme in the FOMCON Toolbox...
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Open Research DataThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublicationIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Numerical Investigation of Nuclear Reactor Kinetic and Heat Transfer Fractional Model with Temperature Feedback
PublicationAbstract—In the paper, the numerical results concerning the kinetics and proposed heat exchange models in nuclear reactor based on fractional calculus are presented for typical inputs. Two fractional models are proposed and compared with the model based on ordinary derivative. The first fractional model is based on one of the generalized Cattaneo equations. The second one is based on replacing the ordinary to fractional order of...
-
Computational issues of solving the 1D steady gradually varied flow equation
PublicationIn this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution....
-
A solution of non-linear differential problem with application to selected geotechnical problems
PublicationA certain non-linear differential equation containing a power of unknown function being the solution is considered with application to selected geotechnical problems. The equation can be derived to a linear differential equation by a proper substitution and properties of the operations G and S.
-
Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0,1].
Open Research DataThe presented dataset is a result of the convergence analysis of the Mickens-type, nonlinear, finite-difference discretization of a generalized Burgers–Huxley partial differential equation.
-
Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0, γ^(1/p)].
Open Research DataPresented dataset is a result of the convergence analysis of the Mickens-type, nonlinear, finite-difference discretization of a generalized Burgers–Huxley partial differential equation. The generalized Burgers–Huxley equation is a diffusive partial differential equation with nonlinear advection and diffusion. The boundary problem for this equation possesses...
-
Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator
PublicationA new approach is used to investigate the analytical solutions of the mathematical fractional Casson fluid model that is described by the Constant Proportional Caputo fractional operator having non-local and singular kernel near an infinitely vertical plate. The phenomenon has been expressed in terms of partial differential equations, and the governing equations were then transformed in non-dimensional form. For the sake of generalized...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublicationA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublicationThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
Different types of solvability conditions for differential operators
PublicationSolvability conditions for linear differential equations are usually formulated in terms of orthogonality of the right-hand side to solutions of the homogeneous adjoint equation. However, if the corresponding operator does not satisfy the Fredholm property such solvability conditions may be not applicable. For this case, we obtain another type of solvability conditions, for ordinary differential equations on the real axis, and...
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublicationIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
On possible applications of media described by fractional-order models in electromagnetic cloaking
PublicationThe purpose of this paper is to open a scientific discussion on possible applications of media described by fractional-order (FO) models (FOMs) in electromagnetic cloaking. A 2-D cloak based on active sources and the surface equivalence theorem is simulated. It employs a medium described by FOM in communication with sources cancelling the scattered field. A perfect electromagnetic active cloak is thereby demonstrated with the use...
-
Crank–Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations
PublicationIn this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grünwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes....
-
Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment
PublicationWe study the entropy production that is associated with the growing or shrinking of a small granule in, for instance, a colloidal suspension or in an aggregating polymer chain. A granule will fluctuate in size when the energy of binding is comparable to k_{B}T, which is the “quantum” of Brownian energy. Especially for polymers, the conformational energy landscape is often rough and has been commonly modeled as being self-similar...
-
Karolina Lademann mgr
PeopleCurriculum vitae
-
Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
PublicationIn this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation must be within the unit circle on the complex z-plane. The obtained...
-
Discussion of “Development of an Accurate Time integration Technique for the Assessment of Q-Based versus h-Based Formulations of the Diffusion Wave Equation for Flow Routing” by K. Hasanvand, M.R. Hashemi and M.J. Abedini
PublicationThe discusser read the original with great interest. It seems, however, that some aspects of the original paper need additional comments. The authors of the original paper discuss the accuracy of a numerical solution of the diffusion wave equation formulated with respect to different state variables. The analysis focuses on nonlinear equations in the form of a single transport equation with the discharge Q (volumetric flow rate)...
-
On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
PublicationIn this note, we establish the property of convergence for a finite-difference discretization of a diffusive partial differential equation with generalized Burgers convective law and generalized Hodgkin–Huxley reaction. The numerical method was previously investigated in the literature and, amongst other features of interest, it is a fast and nonlinear technique that is capable of preserving positivity, boundedness and monotonicity....
-
Inverse Flood Routing Using Simplified Flow Equations
PublicationThe paper considers the problem of inverse flood routing in reservoir operation strategy. The aim of the work is to investigate the possibility of determining the hydrograph at the upstream end based on the hydrograph required at the downstream end using simplified open channel flow models. To accomplish this, the linear kinematic wave equation, the diffusive wave equation and the linear Muskingum equation are considered. To achieve...
-
Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization a` la Mickens of the generalized Burgers–Huxley equation.
PublicationDeparting from a generalized Burgers–Huxley partial differential equation, we provide a Mickens-type, nonlinear, finite-difference discretization of this model. The continuous system is a nonlinear regime for which the existence of travelling-wave solutions has been established previously in the literature. We prove that the method proposed also preserves many of the relevant characteristics of these solutions, such as the positivity,...
-
Crystallization kinetics study of dynamically vulcanized PA6/NBR/HNTs nanocomposites by nonisothermal differential scanning calorimetry
PublicationInvestigation of crystallization behavior and kinetics of thermoplastic elastomer nanocomposites was the subject of limited works because of complexities associated with semiexperimental modeling of such phenomenon in a system containing components having completely different behavior in the molten state. Nonisothermal crystallization kinetics of dynamically vulcanized PA6/NBR/HNTs thermoplastic elastomer nanocomposites was mathematically...
-
Solving Boundary Value Problems for Second Order Singularly Perturbed Delay Differential Equations by ε-Approximate Fixed-Point Method
PublicationIn this paper, the boundary value problem for second order singularly perturbed delay differential equation is reduced to a fixed-point problem v = Av with a properly chosen (generally nonlinear) operator A. The unknown fixed-point v is approximated by cubic spline vh defined by its values vi = vh(ti) at grid points ti, i = 0, 1, ... ,N. The necessary for construction the cubic spline and missing the first derivatives at the boundary...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublicationIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...