Publications
Filters
total: 580
Catalog Publications
Year 2016
-
Parallel implementation of the DGF-FDTD method on GPU Using the CUDA technology
PublicationThe discrete Green's function (DGF) formulation of the finite-difference time-domain method (FDTD) is accelerated on a graphics processing unit (GPU) by means of the Compute Unified Device Architecture (CUDA) technology. In the developed implementation of the DGF-FDTD method, a new analytic expression for dyadic DGF derived based on scalar DGF is employed in computations. The DGF-FDTD method on GPU returns solutions that are compatible...
-
Projektowanie symetryzatorów mikrofalowych z wykorzystaniem modelowania elektromagnetycznego wspomaganego sztucznymi sieciami neuronowymi
PublicationNiniejsza rozprawa opisuje proponowaną metodę projektowania symetryzatorów szerokopasmowych oraz możliwy sposób jej automatyzacji. Podstawą metody jest tzw. „projekt wzorcowy”, czyli układ symetryzatora planarnego zaprojektowany na dowolnym podłożu dielektrycznym. Celem projektu jest nowy symetryzator zrealizowany na innym podłożu dielektrycznym, działający w tym samym lub innym paśmie częstotliwości. Zastosowanie modelowania elektromagnetycznego,...
-
Resonance Frequency Calculation of a Multilayer and Multipatch Spherical Microstrip Structure Using a Hybrid Technique
PublicationThis communication offers a rigorous analysis of the resonance frequency problem of a spherical microstrip structure mounted on a multilayer, dielectric-coated metallic sphere, with an electrically small radius. The structure consists of single or multiple metallic patches with arbitrary shapes. A full-wave analysis is employed with the use of proposed hybrid approach, combining the finite-difference technique with a spectral domain...
-
Resonant Frequencies in Microstrip Structure with Omega Medium Substrate
PublicationThe paper presents the research on a rectangular microstrip structure with multilayer substrate containing dielectric and omega medium layers. The effect of pseudochiral medium layer location in the substrate and its thickness on the resonant frequency of the rectangular microstrip structure is investigated. The numerical analysis of investigated structures is based on expansion of electric and magnetic fields. Utilizing the continuity...
-
Resonant Frequencies in the Open Microstrip Structures Placed on Curved Surfaces
PublicationThe paper presents the research on open microstrip structures placed on curved surfaces such as cylindrical, elliptical or spherical. The numerical analysis of investigated structures is based on expansion of electric and magnetic fields into suitable function series. Utilizing the continuity conditions the boundary problem is formulated which is solved with the use of method of moments. The investigated structures find application...
-
Scattering From a Cylindrical Object of Arbitrary Cross Section With the Use of Field Matching Method
PublicationA simple and intuitive solution to scattering problems in shielded and open structures is presented. The main idea of the analysis is based on the direct field matching technique involving the usage of projection of the fields at the boundary on a fixed set of orthogonal basis functions. Different convex shapes and various obstacle materials are considered to verify the validity of the method in open and closed structures. The...
-
Shielded coupled strip and slot guides with a thin omega pseudochiral medium layer
PublicationA method of moments combined with mode matching technique is applied to analyze the shielded coupled strip and slot line structures containing a thin plate of Omega pseudochiral medium. The boundary problems are simplified by introducing for omega medium the approximate continuity conditions. Such mathematical model allows to examine the field displacement effect appearing in the considered guide resulting from the coupling between...
-
Single-Anchor Indoor Localization Using ESPAR Antenna
PublicationIn this paper a new single-anchor indoor localization concept employing Electronically Steerable Parasitic Array Radiator (ESPAR) antenna has been proposed. The new concept uses a simple fingerprinting algorithm adopted to work with directional main beam and narrow minimum radiation patterns of ESPAR antenna that scans 360° area around the base station, while the signal strength received from a mobile terminal is being recorded...
-
Substrate-integrated waveguide (SIW) filter design using space mapping
PublicationIn this paper, we present a fast technique for an automated design of microwave filters in substrate integrated wave (SIW) technology. The proposed methodology combines the space mapping technique with a cost function defined using the location of complex zeros and poles of filter’s transfer and reflection function and uses a rectangular waveguide as a surrogate model. The effectiveness of the proposed technique is presented with...
-
UHF ESPAR antenna for simple Angle of Arrival estimation in UHF RFID applications
PublicationAn electronically switched beam antenna for localization of passive UHF RFID tags based on a simple Angle of Arrival (AoA) technique is proposed‥ Detailed antenna design and realization are presented together with corresponding simulations and measurement results. Experimental tests with passive UHF RFID tag show the validity of theoretical assumptions for application of the antenna in UHF RFID based localization systems.
-
Wewnętrzny system zapewnienia jakości kształcenia na wydziałach PG
PublicationW artykule przedstawiono podstawowe informacje o Wewnętrznym Systemie Zapewnienia Jakości Kształcenia (WSZJK) i zasadach jego funkcjonowania na wydziałach Politechniki Gdańskiej.
-
Wideband Model Order Reduction for Macromodels in Finite Element Method
PublicationAbstract: This paper presents a novel algorithm for accelerating 3D Finite Element Method simulations by introducing macromodels created in local model order reduction in the selected subdomains of the computational domain. It generates the projection basis for a compact system of equations associated with a separate subdomain. Due to non-linear frequency dependency in the Right Hand Side (RHS), the standard reduction methods do...
-
Wireless multimodal localization sensor for industrial applications
PublicationThis paper presents the concept and design of a wireless multimodal localization sensor for hybrid localization systems combining vision-based, radio-based and inertial techniques in order to alleviate problems in harsh and complex industrial environments. It supports two radio technologies, 868 MHz UHF RFID and 2.4 GHz WSN, for positioning purposes and communications. The sensor includes LED light transmitters for vision-based...
Year 2015
-
A Goal-Oriented Error Estimator for Reduced Basis Method Modeling of Microwave Devices
PublicationThis letter proposes a novel a-posteriori error estimator suitable for the reduced order modeling of microwave circuits. Unlike the existing error estimators based on impedance function residuals, the new one exploits the residual error associated with the computation of the scattering matrix. The estimator can be effectively used in the Reduced Basis Method (RBM) to automatically generate reduced-order models. The results of numerical...
-
A New Expression for the 3-D Dyadic FDTD-Compatible Green's Function Based on Multidimensional Z-Transform
PublicationIn this letter, a new analytic expression for the time-domain discrete Green's function (DGF) is derived for the 3-D finite-difference time-domain (FDTD) grid. The derivation employs the multidimensional Z-transform and the impulse response of the discretized scalar wave equation (i.e., scalar DGF). The derived DGF expression involves elementary functions only and requires the implementation of a single function in the multiple-precision...
-
A Task-Scheduling Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a GPU
PublicationIn this paper, a task-scheduling approach to efficiently calculating sparse symmetric matrix-vector products and designed to run on Graphics Processing Units (GPUs) is presented. The main premise is that, for many sparse symmetric matrices occurring in common applications, it is possible to obtain significant reductions in memory usage and improvements in performance when the matrix is prepared in certain ways prior to computation....
-
Acceleration of the DGF-FDTD method on GPU using the CUDA technology
PublicationWe present a parallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method on a graphics processing unit (GPU). The compute unified device architecture (CUDA) parallel computing platform is applied in the developed implementation. For the sake of example, arrays of Yagi-Uda antennas were simulated with the use of DGF-FDTD on GPU. The efficiency of parallel computations...
-
An Analysis of Elliptical-Rectangular Multipatch Structure on Dielectric-Coated Confocal and Nonconfocal Elliptic Cylinders
PublicationA rigorous analysis of the resonance frequency problem of an elliptical-rectangular microstrip structure mounted on dielectric-coated elliptic conducting cylinder, with electrically small radius, is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. The complex resonance frequencies of...
-
An Analysis of Elliptical-Rectangular Patch Structure on Multilayer Elliptic Cylinders
PublicationThe resonance frequency problem of an ellipticalrectangular patch mounted on multilayered dielectric coated elliptic conducting cylinder, is investigated in this paper. A fullwave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. An additional theorem for Mathieu functions is utilized to investigate the non-confocal ellipse...
-
An Analysis of Multistrip Line Configuration on Elliptical Cylinder
PublicationA configuration of multistrip lines mounted on a multilayer dielectric coated elliptic cylinder is investigated in this paper. A full-wave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. Both open and shielded lines are considered in the analysis. Propagation coefficients and characteristic impedances are calculated for the...
-
Analysis of radiation and scattering problems with the use of hybrid techniques based on the discrete Green's function formulation of the FDTD method
PublicationIn this contribution, simulation scenarios are presented which take advantage of the hybrid techniques based on the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method. DGF-FDTD solutions are compatible with the finite-difference grid and can be applied for perfect hybridization of the FDTD method. The following techniques are considered: (i) DGF-FDTD for antenna simulations, (ii) DGF-based...
-
Automated Reduced Model Order Selection
PublicationThis letter proposes to automate generation of reduced-order models used for accelerated -parameter computation by applying a posteriori model error estimators. So far,a posteriori error estimators were used in Reduced Basis Method (RBM) and Proper Orthogonal Decomposition (POD) to select frequency points at which basis vectors are generated. This letter shows how a posteriori error estimators can be applied to automatically select...
-
Complex Root Finding Algorithm Based on Delaunay Triangulation
PublicationA simple and flexible algorithm for finding zeros of a complex function is presented. An arbitrary-shaped search region can be considered and a very wide class of functions can be analyzed, including those containing singular points or even branch cuts. The proposed technique is based on sampling the function at nodes of a regular or a self-adaptive mesh and on the analysis of the function sign changes. As a result, a set of candidate points...
-
CZĘSTOTLIWOŚCI REZONANSOWE W OTWARTYCH STRUKTURACH MIKROPASKOWYCH UMIESZCZONYCH NA POWIERZCHNIACH ZAKRZYWIONYCH
PublicationArtykuł prezentuje wyniki badań otwartych struktur mikropaskowych umieszczonych na powierzchniach cylindrycznych, eliptycznych lub sferycznych. Analiza numeryczna badanych struktur oparta jest na rozwinięciu pól elektrycznych i magnetycznych w odpowiednie szeregi funkcyjne. Korzystając z warunków ciągłości pól formułowane jest zagadnienie brzegowe, które rozwiązywane jest przy wykorzystaniu metody momentów. Badane struktury mają...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
EFEKTYWNA TECHNIKA POSZUKIWANIA MIEJSC ZEROWYCH FUNKCJI ZESPOLONYCH WYSTĘPUJĄCYCH W ZAGADNIENIACH PROPAGACYJNYCH
PublicationArtykuł dotyczy zastosowania nowatorskiego algorytmu poszukiwania miejsc zerowych (na płaszczyźnie zespolonej) do badania własności propagacyjnych prowadnic mikrofalowych. Problemy tego typu występują nie tylko przy analizie struktur stratnych, ale również w badaniu zjawisk związanych z wypromieniowaniem (rodzaje wycie-kające i zespolone). Proponowany algorytm jest prosty w implementacji, a jednocześnie „odporny” na osobliwości...
-
Efficient algorithm for blinking LED detection dedicated to embedded systems equipped with high performance cameras
PublicationThis paper presents the concept and implementation of an efficient algorithm for detection of blinking LED or similar signal sources. Algorithm is designed for embedded devices equipped with high performance cameras being a part of an indoor positioning embedded system. An algorithm to be implemented in such a system should be efficient in terms of computational power what is hard to be achieved when large amount of data from camera...
-
Efficient Multi-Fidelity Design Optimization of Microwave Filters Using Adjoint Sensitivity
PublicationA simple and robust algorithm for computationally efficient design optimiza-tion of microwave filters is presented. Our approach exploits a trust-region (TR)-based algorithm that utilizes linear approximation of the filter response obtained using adjoint sensitivity. The algorithm is sequentially executed on a family of electromagnetic (EM)-simulated models of different fidelities, starting from a coarse-discretization one, and...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Fast Simulation-Driven Design of a Planar UWB Dipole Antenna with an Integrated Balun
PublicationThe paper presents a design of an ultra-wideband (UWB) antenna with an integrated balun. A fully planar balun interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure includes the dipole, the balun, and the microstrip input to account for interactions over the UWB band. The EM model is adjusted for low reflection...
-
FDTD-Compatible Green's function based on scalar discrete Green's function and multidimensional Z-transform
PublicationIn this contribution, a new formulation of the discrete Green's function (DGF) is presented for the finitedifference time-domain (FDTD) grid. Recently, dyadic DGF has been derived from the impulse response of the discretized scalar wave equation (i.e., scalar DGF) with the use of the multidimensional Z-transform. Its software implementation is straightforward because only elementary functions are involved and a single function...
-
Hybrid technique for the analysis of circular waveguide junctions loaded with ferrite posts
PublicationThis study presents a hybrid technique for the analysis of circular waveguide junctions loaded with axially symmetrical ferrite posts of irregular shape. The method is based on a combination of the finite-difference frequency- domain technique with a mode-matching technique. The proposed approach is validated by comparing the presented results with numerical ones obtained from commercial software. The application of a cylindrical...
-
Miniaturized bandpass substrate integrated waveguide filter with frequency-dependent coupling realized using asymmetric GCPW discontinuity
PublicationAn asymmetric GCPW discontinuity is proposed to provide frequency-dependent coupling in microwave bandpass filters. Wider and narrow sections introduce, respectively, the capacitive and inductive component to the equivalent circuit representing coupling. By selecting the dimensions of the discontinuity and width of the inductive window in substrate integrated waveguide, an additional transmission zero can be introduced at prescribed...
-
Model Order Reduction for Problems With Dispersive Surface Boundary Conditions
PublicationThis letter proposes a new scheme for reduced-order finite-element modeling of electromagnetic structures with nonlinear, dispersive surface boundary conditions, which optimally exploits the numerically stable and efficient MOR framework for second-order systems provided by SAPOR method. The presented results of numerical experiments for an example of a waveguide filter demonstrate the superior accuracy of the resulting reduced models...
-
Nonreciprocal Devices Utilizing Longitudinally Magnetized Ferrite Coupled Lines
PublicationThis chapter presents authors’ recent research on the nonreciprocal devices utilizing longitudinally magnetized ferrite coupled line (FCL) junction. The principle of operation of FCL junction is explained and the hybrid techniques of analysis are shown. Numerical and experimental results concerning the nonreciprocal devices utilizing the different configurations of FCL junctions are presented and discussed.
-
On the low-cost design of abbreviated multisection planar matching transformer
PublicationA numerically demanding wideband matching transformer composed of three nonuniform transmission lines (NUTLs) has been designed and optimized at a low computational cost. The computational feasibility of the design has been acquired through the exploitation of low-fidelity NUTL models in most steps of the design procedure and an implicit space mapping optimization engine, providing high accuracy results with only a handful of EM...
-
Optymalizacja wydajności obliczeniowej metody elementów skończonych w architekturze CUDA
PublicationCelem niniejszej rozprawy oraz stypendium odbytego w ramach projektu było opracowanie numerycznie efektywnego rozwiązania algorytmicznego i sprzętowego, które umożliwia przyspieszenie analizy problemów elektromagnetycznych metodą elementów skończonych (MES) z funkcjami bazowymi wysokiego rzędu. Metoda elementów skończonych w dziedzinie częstotliwości stanowi wydajne i uniwersalne narzędzie analizy układów mikrofalowych (rys....
-
Podstawy elektromagnetyzmu w zadaniach
PublicationNiniejsza książka jest owocem wieloletnich doświadczeń nauczycieli akademickich, Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej, kształcących studentów w zakresie techniki mikrofalowej i antenowej oraz telekomunikacji światłowodowej i bezprzewodowej. Przedstawione w niej zagadnienia służą zdefiniowaniu oraz ilustracji podstawowych praw rządzących światem pól: elektrycznego i magnetycznego. Zaproponowany...
-
Pola i fale elektromagnetyczne w zadaniach
PublicationNiniejsza książka jest owocem wieloletnich doświadczeń grupy nauczycieli akademickich, Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej, kształcących studentów w zakresie techniki mikrofalowej i antenowej oraz telekomunikacji światłowodowej i bezprzewodowej. Praca ta stanowi rozszerzenie i kontynuację podręcznika Podstawy elektromagnetyzmu w zadaniach. Zachowana jest również konwencja prezentacji treści...
-
Resonance Frequency Calculation of Spherical Microstrip Structure Using Hybrid Technique
PublicationIn this paper the spherical microstrip structure is considered. The structure is composed of a metallic patch with an arbitrary shape placed on a dielectric coated metallic sphere. In the analysis the hybrid technique is utilized. In this approach the finite-difference technique is applied in a cavity model to determine the current basis functions on the patch. Next, using method of moments, the resonance frequency of the structure...
-
Resonance in Rectangular Microstrip Structure Loaded with a Pseudochiral Medium Layer
PublicationA rectangular microstrip structure with multilayer substrate containing dielectric and pseudochiral medium layers is studied in this paper. The effect of Omega medium layer location in the substrate and its thickness on the complex resonant frequency of the rectangular microstrip structure is investigated.
-
Wideband crossover structure with double ring resonators
PublicationThe structure of a four-port microstrip crossover is presented. The device is composed of two ring resonators, one circular and one built from meander lines, connected by four straight lines. The equivalent circuit model of the crossover is derived. The structure is designed on thin and flexible substrate to allow it to bend. The possibility of applying the device on curved surfaces is tested experimentally.
-
Wideband Macromodels in Finite Element Method
PublicationThis letter proposes a novel projection technique for accelerating Finite Element Method simulations. The algorithm is based on the Second-order Arnoldi Method for Passive Order Reduction (SAPOR). It involves generation of two projection bases and thanks to this it is applicable to the systems of equations, which contain the quadratic frequency-dependence in the input term, that arise when projection is applied locally in the selected...
Year 2014
-
A 3D-FEM mesh technique for fast analysis of waveguide problems containing rotatable tuning elements
PublicationIn this paper a meshing technique for 3D Finite Element Method is presented. It allows for fast analysis and optimization of the waveguide structures, which contain rotatable tuning elements. In the proposed procedure a thin layer of varying cylindrical mesh buffer is introduced in order to reuse unchanged mesh and FEM matrices in the rest of the domain.
-
A compact microstrip rat-race coupler constituted by nonuniform transmission lines
PublicationIn this work, a step-by-step development of a compact microstrip rat-race coupler (RRC) has been presented and discussed. A high degree of miniaturization has been obtained by substituting six quarter-wavelength uniform atomic building blocks of a RRC by their nonuniform counterparts. The miniaturization procedure has been realized in three progressive steps: (i) the first layout solution of a miniaturized RRC has been acquired...
-
A Concept and Design Optimization of Compact Planar UWB Monopole Antenna
PublicationA novel structure concept of a compact UWB monopole antenna is introduced together with a low-cost design optimization procedure. Reduced footprint is achieved by introduction of a protruded ground plane for current path increase and a matching transformer to ensure wideband impedance matching. All geometrical parameters of the structure are optimized simultaneously by means of surrogate based optimization involving variable-fidelity...
-
A Linear Phase Filter in Quadruplet Topology With Frequency-Dependent Couplings
PublicationThis letter presents a design of a linear phase microwave bandpass filter. The filter is composed of four resonators arranged in the quadruplet topology. Making the cross and one direct coupling dispersive gives additional design flexibility. The first advantage of using frequency-dependent couplings is the possibility to chose an arbitrary location of a pair of complex transmission zeros (TZs) in the s-domain. The second one is...
-
A robust design of a numerically demanding compact rat-race coupler
PublicationA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
A Self-Equalized Waveguide Filter With Frequency-Dependent (Resonant) Couplings
PublicationThis letter presents a design of a fifth-order linear phase filter with frequency-dependent couplings. The filter is composed of a triplet that is directly coupled to two resonators at the input and output. To provide group delay flattening a cross-coupling in the trisection has a strongly dispersive character with a negative slope parameter. To achieve this, an E-plane stub with a septum was used. To further improve the filter...
-
A Systematic Search for New Coupling Schemes of Cross-Coupled Resonator Bandpass Filters
PublicationIn this paper, a systematic approach to an extensive search for topologies of cross-coupled filters with generalized Chebyshev response is presented. The technique applies graph theory to find unique, nonisomorphic filter configurations, and tests whether a specific frequency response can be realized in a given set of topologies. The results of the search are then stored in a database of possible filter configurations.