Effect of MgSO4 nutrition on Theobroma cacao L. susceptibility to Phytophthora megakarya infection - Publikacja - MOST Wiedzy


Effect of MgSO4 nutrition on Theobroma cacao L. susceptibility to Phytophthora megakarya infection


A new strategy to reduce the severity of black pod disease (BPD) in T. cacao plants using MgSO4 nutrition was investigated. The dynamics of the tolerance to BPD of 18 susceptible T. cacao plantlets coming from the cross (♀SNK64 × ♂UPA14) was monitored during weekly (8 weeks) supply of MgSO4 into the soil. Prior to MgSO4 application, disease scores of the 18 plantlets (in six sets of three plantlets per set) were varying between 3.5 (susceptible) and 5 (highly susceptible). After MgSO4 application, a substantial decrease in disease scores was observed compared to the control. The percentage of disease tolerance gain of plantlets versus MgSO4 supplied (0–2.96 g) presented a quasi-hyperbolic curve with asymptotic line corresponding to 60% (day 28) and 70% (day 56) Cysteine content was not significantly different between the six triplets before MgSO4 nutrition. On days 28 and 56 of MgSO4 supplementation, cysteine content presented a pattern similar to the tolerance gain of plantlet sets. The monitoring of glutathione content versus MgSO4 supplementation (compared to day 0) showed sigmoid (day 28) and hyperbolic (day 56) curves which were associated with defined mathematical laws determined by MALAB software. Negative and highly significant correlations were observed between disease scores, cysteine and glutathione contents in leaves while positive and highly significant correlations were observed between cysteine and glutathione contents in leaves. These data might mean that MgSO4 nutrition significantly improved the tolerance of T. cacao. The mechanism of tolerance improvement might be associated with the synthesis of sulphur containing compounds.


  • 0


  • 0

    Web of Science

  • 0


Autorzy (8)

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
PLANT PROTECTION SCIENCE nr 54, strony 74 - 82,
ISSN: 1212-2580
Rok wydania:
Opis bibliograficzny:
Minyaka E., Madina B., Kusznierewicz B., Doungous O., Haouni S., Hawadak J., Niemenak N., Omokolo D.: Effect of MgSO4 nutrition on Theobroma cacao L. susceptibility to Phytophthora megakarya infection// PLANT PROTECTION SCIENCE. -Vol. 54, (2018), s.74-82
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.17221/124/2016-pps
Bibliografia: test
  1. Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., Haneklaus S., Schnug E. (2004): Sulphur supply and infection with Pyrenopeziza brassicae influence l-cysteine desulphydrase activity in Brassica napus L. Journal of Experimental Botany, 55: 2305-2312. otwiera się w nowej karcie
  2. Bloem E., Haneklaus S., Salac I., Wickenhäuser P., Schnug E. (2007): Facts and fiction about sulphur metabolism in relation to plant-pathogen interactions. Plant Biology, 9: 596-607. otwiera się w nowej karcie
  3. Cooper R.M., Williams J.S. (2004): Elemental sulphur as an induced antifungal substance in plant defence. Journal of Experimental Botany, 55: 1947-1953. otwiera się w nowej karcie
  4. Driver J.A., Kuniyuki A.H. (1984): in vitro propagation of paradox walnut rootstock. Horticulture Science, 19: 507-509.
  5. Dubuis P.H., Marazzi C., Staedler E., Mauch F. (2005): Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. Journal of Phytopathology, 153: 27-36. otwiera się w nowej karcie
  6. Ellman G. (1959): Tissue sulfhydryl groups. Archive of Biochemistry and Biophysics, 82: 70-77. otwiera się w nowej karcie
  7. Gaitonde M. (1967): A spectrophometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochemistry Journal, 104: 627-633. otwiera się w nowej karcie
  8. Kataoka T., Hayashi N., Yamaya T., Takahashi H. (2004): Root to-shoot transport of sulphate in arabidopsis. Evi- dence for the role of SULTR3;5 as a component of low- doi: 10.17221/124/2016-PPS affinity sulphate transport system in the root vasculature. Plant Physiology, 136: 4198-4204 otwiera się w nowej karcie
  9. Minyaka E., Niemenak N., Issali E.A., Sangaré A., Omokolo N.D. (2010): Sulphur deplection altered somatic embryo- genesis in Theobroma cacao L. Biochemical difference related to sulphur metabolism between embryogeneic and non embryogenic calli. African Journal of Biotech- nology, 9: 5665-5675. otwiera się w nowej karcie
  10. Minyaka E., Niemenak N., Fotso, Sangare A., Omokolo N.D. (2008): Effect of MgSO 4 and K 2 SO 4 on somatic embryo differentiation in Theobroma cacao L. Plant Cell Tissue Organ Culture, 94: 149-160. otwiera się w nowej karcie
  11. Mou Z., Fan W., Dong X. (2003): Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113: 935-944. otwiera się w nowej karcie
  12. Nyassé S., Cilas C., Hérail C., Blaha G. (1995): Leaf inocula- tion as early screening test for cocoa (Theobroma cacao L.) resistance to Phytophthora black pod disease. Crop Protection, 14: 657-663. otwiera się w nowej karcie
  13. Nyassé S., Efombagn M.I.B., Kébé B.I., Tahi G.M., De- spréaux D., Cilas C. (2007): Integrated management of Phytophthora diseases on cocoa (Theobrama cacao L.): impact of plant breeding on pod rot incidence. Crop Protection, 26: 40-45. otwiera się w nowej karcie
  14. Nyassé S., Efombagn M.I.B., Bouambi E., Ndoumbe-Nkeng, M., Eskes A.B. (2003): Early selection for resistance to Phytophthora megakarya in local and introduced cocoa varieties in Cameroon. Tropical Science, 43: 96-102. otwiera się w nowej karcie
  15. Pokou N.D., N'Goran J.A.K., Kebe I., Eskes A., Tahi M., Sangare A. (2008): Levels of resistance to Phytophthora pod rot in cocoa accessions selected on farm in Cote d'Ivoire. Crop Protection, 27: 302-309. otwiera się w nowej karcie
  16. Rausch T., Wachter A. (2005): Sulphur metabolism: a ver- satile platform for launching defence operations. Trends in Plant Science, 10: 503-509. otwiera się w nowej karcie
  17. Rausch T., Gromes R., Liedschulte V., Müller I., Bogs J., Galovic V., Wachter A. (2007): Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biology, 9: 565-572. otwiera się w nowej karcie
  18. Saito K. (2004): Sulphur assimilatory metabolism. The long and smelling road. Plant Physiology. 136: 2443-2450. otwiera się w nowej karcie
  19. Schnug E., Haneklaus S., Booth E., Walker K.C. (1995): Sulphur supply and stress resistance in oilseed rape. In: Rapeseed Today and Tomorrow. Proceedings 9 th Inter- national Rapeseed Congress, July 4-7, 1995, Cambridge, UK: 229-231.
  20. Ströher E., Dietz K.-J. (2006): Concepts and approaches towards understanding the cellular redox proteome. Plant Biology, 8: 407-418. otwiera się w nowej karcie
  21. Tcharbuahbokengo N. (2005): Cocoa production in Cam- eroon. In: Brooks K.N., Ffolliott P.F. (eds): Moving Agroforestry into the Mainstream. 9 th North American Agroforestry Conference Proceedings, June 12-15, 2005, St. Paul, USA.
  22. Vidhyasekaran P. (2000): Physiology of Disease Resistance in Plants. Vol. II. Boca Raton, CRC Press, Inc.
  23. Williams, J.S., Cooper, R.M. (2004): The oldest fungicide and newest phytoalexin -a reappraisal of the fungitoxic- ity of elemental sulphur. Plant Pathology, 53: 263-279. otwiera się w nowej karcie
  24. Williams J.S., Hall S.A., Hawkesford M.J., Beale M.H., Coop- er R.M. (2002): Elemental sulphur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiology, 128: 150-159. otwiera się w nowej karcie
  25. Zook M., Hammerschmidt R. (1997): Origin of the thiazole ring of camalexin, a phytoalexin from arabidopsis thali- ana. Plant Physiology, 113: 463-446. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 29 razy

Publikacje, które mogą cię zainteresować

Meta Tagi