Injury Prediction Models for Onshore Road Network Development - Publikacja - MOST Wiedzy

Wyszukiwarka

Injury Prediction Models for Onshore Road Network Development

Abstrakt

Integrating different modes of transport (road, rail, air and water) is important for port cities. To accommodate this need, new transport hubs must be built such as airports or sea ports. If ports are to grow, they must be accessible, a feature which is best achieved by building new roads, including fast roads. Poland must develop a network of fast roads that will provide good access to ports. What is equally important is to upgrade the network of national roads to complement fast roads. A key criterion in this case is to ensure that the roads are efficient to minimise time lost for road users and safe. With safety standards and safety management practices varying vastly across the EU, Directive 2008/96/EC of the European Parliament and of the Council was a way to ensure that countries follow procedures for assessing the impact of road projects on road safety and conduct road safety audits, road safety management and road safety inspections. The main goal of the research was to build mathematical models to combine road safety measures, i.e. injury density (DI) and accident density (DA), with road and traffic factors on longer sections, all based on risk analysis. The practical objective is to use these models to develop tools for assessing how new road projects will impact road safety. Because previous research on models to help estimate injuries (I) or injury density (DI) on long sections was scarce, the authors addressed that problem in their work. The idea goes back to how Poland is introducing procedures for assessing the effects of infrastructure on safety and developing a method to estimate accident indicators to support economic analysis for new roads, a solution applied in JASPERS. Another reason for the research was Poland’s insufficient and ineffective pool of road safety management tools in Poland. The paper presents analyses of several models which achieved satisfactory results. They are consistent with the work of other researchers and the outcomes of previous research conducted by the authors.

Cytowania

  • 3

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 6 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Polish Maritime Research nr 26, strony 93 - 103,
ISSN: 1233-2585
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kustra W., Żukowska J., Budzyński M., Jamroz K.: Injury Prediction Models for Onshore Road Network Development// Polish Maritime Research. -Vol. 26, iss. 2 (2019), s.93-103
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/pomr-2019-0029
Bibliografia: test
  1. AASHTO, 2010. Highway Safety Manual. American Association of State Highway and Transportation Officials, Washington.
  2. Abdel-Aty, M., Radwan, A.E., 2000a. Developing crash predictive models for a principal arterial, in: Traffic Safety on Two Continents. pp. 177-194.
  3. Abdel-Aty, M., Radwan, A.E., 2000b. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 32 5 , 633-42. otwiera się w nowej karcie
  4. Abdel-Aty, M., Radwan, A.E., 2000c. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 32 5 , 633-42. otwiera się w nowej karcie
  5. Al-ghamdi, A.S., 2002. Using logistic regression to estimate the influence of accident factors on accident severity. Accid. Anal. Prev. 34, 729-741. otwiera się w nowej karcie
  6. Ambros, J., Sedoník, J., 2016. A Feasibility Study for Developing a Transferable Accident Prediction Model for Czech Regions. Transp. Res. Procedia 14, 2054-2063. doi:10.1016/J.TRPRO.2016.05.103 otwiera się w nowej karcie
  7. Anastasopoulos, P.C., Mannering, F., Shankar, V.N., Haddock, J.E., 2012a. A study of factors affecting highway accident rates using the random-parameters tobit model. otwiera się w nowej karcie
  8. Accid. Anal. Prev. 45, 628-33. doi:10.1016/j.aap.2011.09.015 otwiera się w nowej karcie
  9. Anastasopoulos, P.C., Mannering, F., Shankar, V.N., Haddock, J.E., 2012b. A study of factors affecting highway accident rates using the random-parameters tobit model. otwiera się w nowej karcie
  10. Accid. Anal. Prev. 45, 628-33. doi:10.1016/j.aap.2011.09.015 otwiera się w nowej karcie
  11. Anastasopoulos, P.C., Shankar, V.N., Haddock, J.E., Mannering, F., 2012c. A multivariate tobit analysis of highway accident-injury-severity rates. Accid. Anal. Prev. 45, 110-9. doi:10.1016/j.aap.2011.11.006 otwiera się w nowej karcie
  12. Asgarzadeh, M., Verma, S., Mekary, R.A., Courtney, T.K., Christiani, D.C., 2017. The role of intersection and street design on severity of bicycle-motor vehicle crashes. Inj. Prev. 23 3 , 179-185. doi:10.1136/injuryprev-2016-042045 otwiera się w nowej karcie
  13. Bared, J.G., Vogt, A., 1998. Accident models for two-lane rural roads: segments and intersections. Federal Highway Administration.
  14. Bhatia, R., Wier, M., Weintraub, J., Humphreys, E.H., Seto, E., 2009. An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. doi:10.1016/j.aap.2008.10.001 otwiera się w nowej karcie
  15. Broughton, J., 1991. Forecasting road accident casualties in Great Britain. Accid. Anal. Prev. 23 5 , 353-362. otwiera się w nowej karcie
  16. Budzynski, M., Jamroz, K., Kustra, W., Gaca, S., Michalski, L., 2011. Instructions for road safety auditors -Part One Assessing the effects of road infrastructure projects on road safety, Part Two Road safety audit -for the GDDKiA. Gdansk University of Technology, Krakow University of Technology, Gdansk.
  17. Budzynski, M., Jamroz, K., Kustra, W., Zukowska, J., 2015. Modeling of traffic safety indicators on Polish national road network, in: Safety and Reliability of Complex Engineered Systems -Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015. pp. 23-30. otwiera się w nowej karcie
  18. Budzynski, M., Kustra, W., Jamroz, K., Gaca, S., Michalski, L., Guminska, L., 2013. Method for forecasting road safety indicators for the purposes of economic effectiveness analyses for projects on Poland's national roads -for the GDDKiA. Gdansk University of Technology, Krakow University of Technology, Gdansk. otwiera się w nowej karcie
  19. Budzynski, M., Rys, D., Kustra, W., 2017. Selected Problems of Transport in Port Towns -Tri-City as an Example. Polish Marit. Res. 24 s1 , 16-24. doi:10.1515/pomr-2017-0016 otwiera się w nowej karcie
  20. Cafiso, S., Di Graziano, A., Di Silvestro, G., La Cava, G., Persaud, B., 2010. Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables. Accid. Anal. Prev. 42 4 , 1072-9. doi:10.1016/j.aap.2009.12.015 otwiera się w nowej karcie
  21. Council, F.M., Harwood, D.W., Hauer, E., Hughes, W.E., Vogt, A., 2000. Prediction of the Expected Safety Performance of Rural Two-Lane Highways. Federal Highway Administration.
  22. Deffenbacher, J.L., Lynch, R.S., Filetti, L.B., Dahlen, E.R., Oetting, E.R., 2003. Anger, aggression, risky behavior, and crash-related outcomes in three groups of drivers. Behav. Res. Ther. 41, 333-349. doi:10.1016/S0005-7967(02)00014-1 otwiera się w nowej karcie
  23. Donmez, B., Boyle, L.N., Lee, J.D., 2007. Safety implications of providing real-time feedback to distracted drivers. Accid. Anal. Prev. 39 3 , 581-590. doi:10.1016/J.AAP.2006.10.003 otwiera się w nowej karcie
  24. El-Basyouny, K., Sayed, T., 2009. Accident prediction models with random corridor parameters. Accid. Anal. Prev. 41 5 , 1118-23. doi:10.1016/j.aap.2009.06.025 otwiera się w nowej karcie
  25. Elvik, R., 2008. The predictive validity of empirical Bayes estimates of road safety. Accid. Anal. Prev. 40 6 , 1964-9. doi:10.1016/j.aap.2008.07.007 otwiera się w nowej karcie
  26. Fernandes, A., Neves, J., 2013a. An approach to accidents modeling based on compounds road environments. Accid. Anal. Prev. 53 2013 , 39-45. doi:10.1016/j.aap.2012.12.041 otwiera się w nowej karcie
  27. Fernandes, A., Neves, J., 2013b. An approach to accidents modeling based on compounds road environments. Accid. Anal. Prev. 53 2013 , 39-45. doi:10.1016/j.aap.2012.12.041 otwiera się w nowej karcie
  28. Garber, N.J., Lei, W., 2001. Stochastic Models Relating Crash Probabilities With Geometric And Corresponding Traffic Characteristics Data. University of Virginia, Charlottesville.
  29. Geedipally, S.R., Lord, D., Dhavala, S.S., 2012a. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid. Anal. Prev. 45 2012 , 258-65. doi:10.1016/j.aap.2011.07.012 otwiera się w nowej karcie
  30. Geedipally, S.R., Lord, D., Dhavala, S.S., 2012b. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid. Anal. Prev. 45 2012 , 258-65. doi:10.1016/j.aap.2011.07.012 otwiera się w nowej karcie
  31. Hakkert, S., 2011. EuroRAP evaluation experience alongside other measures in Israel, in: EuroRAP Plenary, Policy Seminar and Training Course, Belgrade.
  32. Hauer, E., 2007. Safety Models for Urban Four-lane Undivided Road Segments. Transp. Res. Rec. J. Transp. Res. Board 96-105 , 1-22. otwiera się w nowej karcie
  33. Hauer, E., 2004. Statistical Road Safety Modeling. Transp. Res. Rec. J. Transp. Res. Board 1897 May , 81-87. doi:10.3141/1897-11 otwiera się w nowej karcie
  34. Hauer, E., 2001. Overdispersion in modelling accidents on road sections and in empirical bayes estimation. Accid. Anal. Prev. 33 6 , 799-808. otwiera się w nowej karcie
  35. Hauer, E., 1995. On exposure and accident rate. Traffic Eng. Control 36, 134-138. otwiera się w nowej karcie
  36. Hauer, E., 1986. On the estimation of the expected number of accidents. Accid. Anal. Prev. 18 1, 1-12. doi:10.1016/0001-4575(86)90031-X otwiera się w nowej karcie
  37. Hewson, P., 2004. Deprived children or deprived neighbourhoods? A public health approach to the investigation of links between deprivation and injury risk with specific reference to child road safety in Devon County, UK. BMC Public Health 4, 15. doi:10.1186/1471-2458-4-15 otwiera się w nowej karcie
  38. Ivan, J.N., Garder, P.E., Deng, Z., Zhang, C., 2006. The effect of segment characteristics on the severity of head-on crashes on two-lane rural highways. University of Connecticut, University of Maine.
  39. Ivan, J.N., Lord, D., Washington, S.P., 2005. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accid. Anal. Prev. 37 1 , 35-46. doi:10.1016/j. aap.2004.02.004
  40. Iyinam, A.F., Iyinam, S., Ergun, M., 1997. Analysis of Relationship Between HighwaySafety and Road Geometric Design Elements : Turkish Case. Technical University of Istanbul.
  41. Jamroz, K., 2011. Method of risk management in highway engineering. Gdansk University of Technology, Gdansk.
  42. Jamroz, K., Kustra, W., 2011. The risk atlas of Poland ' s national roads 2008-2010. Foundation for Development of Civil Engineering, Gdansk.
  43. Jurewicz, C., Steinmetz, L., 2012. Crash performance of safety barriers on high -speed roads. J. Australas. Coll. Road Saf. 23 3 .
  44. Kiec, M., 2009. The impact of the accessibility of the road on conditions and traffic safety -PhD thesis. Cracow University of Technology.
  45. Kustra, W., 2016. Modelling selected road safety measures on long road sections -thesis.
  46. Kustra, W., Budzynski, M., Jamroz, K., Zukowska, J., 2015. Modelling of traffic safety indicators on Polish national road network, in: ESREL 2015 25th European Safety and Reliability Conference. Zurich, p. 7.
  47. Lao, Y., Wu, Y.-J., Corey, J., Wang, Y., 2011a. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression. Accid. Anal. Prev. 43 1 , 220-7. doi:10.1016/j.aap.2010.08.013 otwiera się w nowej karcie
  48. Lao, Y., Wu, Y.-J., Corey, J., Wang, Y., 2011b. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression. Accid. Anal. Prev. 43 1 , 220-7. doi:10.1016/j.aap.2010.08.013 otwiera się w nowej karcie
  49. Lee, C., Hellinga, B., Saccomanno, F., 2006. Evaluation of variable speed limits to improve traffic safety. Transp. otwiera się w nowej karcie
  50. Res. Part C Emerg. Technol. 14 3 , 213-228. doi:10.1016/J. TRC.2006.06.002 otwiera się w nowej karcie
  51. Lee, J., Mannering, F., 2002. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis. Accid. Anal. Prev. 34 2 , 149-61. otwiera się w nowej karcie
  52. Li, R., Shang, P., 2014. Incident duration modeling using flexible parametric hazard-based models. Comput. Intell. Neurosci. 2014, 723427. doi:10.1155/2014/723427 otwiera się w nowej karcie
  53. Litman, T., 2010. Transportation Elasticities, Transportation. Victoria Transport Policy Institute, Victoria. otwiera się w nowej karcie
  54. Lord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accid. Anal. Prev. 38 4 , 751-66. doi:10.1016/j.aap.2006.02.001 otwiera się w nowej karcie
  55. Lord, D., Geedipally, S.R., 2012. Examining the Crash Variances Estimated by the Poisson-Gamma and Conway- Maxwell-Poisson Models. Transp. Res. Rec. J. Transp. Res. Board 2241 979 , 56-67.
  56. Lord, D., Park, B., 2012. Negative Binomial Regression Models and Estimation Methods, in: Probability Density and Likelihood Functions. Texas A&M University, Korea Transport Institute, pp. 1-15.
  57. Lord, D., Park, P.Y.-J., 2008. Investigating the effects of the fixed and varying dispersion parameters of Poisson-gamma models on empirical Bayes estimates. Accid. Anal. Prev. 40 4 , 1441-57. doi:10.1016/j.aap.2008.03.014 otwiera się w nowej karcie
  58. Ma, J., Kockelman, K.M., Damien, P., 2008a. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid. Anal. Prev. 40 3 , 964-75. doi:10.1016/j.aap.2007.11.002 otwiera się w nowej karcie
  59. Ma, J., Kockelman, K.M., Damien, P., 2008b. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid. Anal. Prev. 40 3 , 964-75. doi:10.1016/j.aap.2007.11.002 otwiera się w nowej karcie
  60. Mannering, F., Venkataraman, S., Woodrow, B., 1996. Statistical analysis of accident rural freeways. Accid. Anal. Prev. 28 3 , 391-401.
  61. Martinelli, F., La Torre, F., Vadi, P., 2009. Calibration of the Highway Safety Manual's Accident Prediction Model for Italian Secondary Road Network. Transp. Res. Rec. J. Transp. Res. Board 2103, 1-9. doi:10.3141/2103-01 otwiera się w nowej karcie
  62. Peer, E., Rosenbloom, T., 2013. When two motivations race: The effects of time-saving bias and sensation-seeking on driving speed choices. Accid. Anal. Prev. 50, 1135-1139. doi:10.1016/J.AAP.2012.09.002 otwiera się w nowej karcie
  63. Ptak-Chmielewska, A., 2013. Generalised linear models. Warsaw School of Economic, Warsaw.
  64. Rakha, H., Arafeh, M., Abdel-Salam, A.G., Guo, F., Flintsch, A.M., 2010. Linear regression crash prediction models: issues and proposed solutions, Virginia Tech Transportation Institute.
  65. Reurings, M., Jannsen, T., Eenink, R., Elvik, R., Cardoso, J., Stefan, C., 2005. Accident Prediction Models and Road Safety Impact Assessment a state of the art, Ripcord. Ripcord -Iserest. otwiera się w nowej karcie
  66. Ryb, G.E., Dischinger, P.C., Kleinberger, M., McGwin, G., Griffin, R.L., 2013. Aortic injuries in newer vehicles. Accid. Anal. Prev. 59, 253-259. doi:10.1016/J.AAP.2013.06.007 otwiera się w nowej karcie
  67. Schafer, J., 2006. Penn State Department of Statistics [WWW Document]. otwiera się w nowej karcie
  68. Dep. Stat. Eberly Coll. Sci. URL sites. stat.psu.edu otwiera się w nowej karcie
  69. Scott-Parker, B., Watson, B., King, M., Hyde, M., 2012. Young, Inexperienced, and on the Road. Transp. Res. Rec. J. Transp. Res. Board. doi:10.3141/2318-12 otwiera się w nowej karcie
  70. Son, H. "Daniel," Kweon, Y.-J., Park, B. "Brian," 2011. Development of crash prediction models with individual vehicular data. Transp. Res. Part C Emerg. Technol. 19 6 , 1353-1363. doi:10.1016/j.trc.2011.03.002 otwiera się w nowej karcie
  71. Technical Committee 18, 2004. Study on Risk Management for Roads. PIARC. otwiera się w nowej karcie
  72. The National Police Headquarters, 2015. SEWIK -Accident data base. otwiera się w nowej karcie
  73. Vaziri, M., 2010. A comparative appraisal of roadway accident for Asia-Pacific countries. Int. J. Eng. Trans. A Basics 23 2 , 111-126.
  74. Wood, G.R., 2005. Confidence and prediction intervals for generalised linear accident models. Accid. Anal. Prev. 37 2 , 267-73. doi:10.1016/j.aap.2004.10.005 otwiera się w nowej karcie
  75. Xie, K., Wang, X., Huang, H., Chen, X., 2013. Corridor-level signalized intersection safety analysis in Shanghai, China using Bayesian hierarchical models. Accid. Anal. Prev. 50, 25-33. doi:10.1016/J.AAP.2012.10.003 otwiera się w nowej karcie
  76. Yannis, G., Papadimitriou, E., Chaziris, A., Broughton, J., 2014. Modeling road accident injury under-reporting in Europe. Eur. Transp. Res. Rev. 6 4 , 425-438. doi:10.1007/ s12544-014-0142-4 otwiera się w nowej karcie
  77. Ye, Z., Zhang, Y., Lord, D., 2013a. Goodness-of-fit testing for accident models with low means. Accid. Anal. Prev. 61, 78-86. doi:10.1016/j.aap.2012.11.007 otwiera się w nowej karcie
  78. Ye, Z., Zhang, Y., Lord, D., 2013b. Goodness-of-fit testing for accident models with low means. Accid. Anal. Prev. 61, 78-86. doi:10.1016/j.aap.2012.11.007 otwiera się w nowej karcie
  79. Zhang, W., Huang, Y.-H., Roetting, M., Wang, Y., Wei, H., 2006. Driver's views and behaviors about safety in China- What do they NOT know about driving? Accid. Anal. Prev. 38 1, 22-27. doi:10.1016/J.AAP.2005.06.015 CONTACT WITH THE AUTHORS Wojciech Kustra e-mail: Wojciech.kustra@pg.edu.pl otwiera się w nowej karcie
  80. Gdańsk University of Technology Faculty od Civil and Environmental Engineering Narutowicza 11, 80-233 Gdansk Poland otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 39 razy

Publikacje, które mogą cię zainteresować

Meta Tagi