New results on estimation bandwidth adaptation - Publikacja - MOST Wiedzy


New results on estimation bandwidth adaptation


The problem of identification of a nonstationary autoregressive signal using non-causal estimation schemes is considered. Noncausal estimators can be used in applications that are not time-critical, i.e., do not require real-time processing. A new adaptive estimation bandwidth selection rule based on evaluation of pseudoprediction errors is proposed, allowing one to adjust tracking characteristics of noncausal estimators to unknown and/or time-varying degree of signal nonstationary. The new rule is compared with the previously proposed one, based on the generalized Akaike’s final prediction error criterion.


  • 0


  • 1

    Web of Science

  • 1


Pełna treść

pobierz publikację
pobrano 4 razy


Copyright (2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.)

Informacje szczegółowe

Publikacja w czasopiśmie
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Opublikowano w:
IFAC-PapersOnLine nr 51, strony 933 - 938,
ISSN: 2405-8963
Tytuł wydania:
18th IFAC Symposium on System Identification SYSID 2018 Stockholm, Sweden, 9–11 July 2018 strony 933 - 938
Rok wydania:
Opis bibliograficzny:
Niedźwiecki M., Ciołek M.. New results on estimation bandwidth adaptation. IFAC-PapersOnLine, 2018, Vol. 51, nr. 15, s.933-938
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ifacol.2018.09.074
Biblografia: test
  1. Baddour, K.E. & Beaulieu, N.C. (2005). Autoregressive models for fading channel simulation. IEEE Trans. Wireless Comm., (4), 1650-1662. otwiera się w nowej karcie
  2. Brillinger, D., Robinson, E.A. & Schoenberg, F.P. Eds. (2012). Time Series Analysis and Applications to Geo- physical Systems. Springer. otwiera się w nowej karcie
  3. Dahlhaus, R. & Giraitis, L. (1998). On the optimal seg- ment length for parameter estimates for locally statio- nary time series. J. Time Series Anal., (19), 629-655. otwiera się w nowej karcie
  4. Dahlhaus, R. (2012). Locally stationary processes. Hand- book Statist., (25), 1-37.
  5. Fabri, S.G., Camilleri, K.P. & Cassar, T. (2011). Para- metric modelling of EEG data for the identification of mental tasks. Biomed. Eng. Trends in Electron., Commun. Software, (A. Laskovski Ed.), 367-386.
  6. Hayes, J.F. & Ganesh Babu, T.V.J. (2004). Modeling and Analysis of Telecommunication Networks. Wiley. otwiera się w nowej karcie
  7. Lesage, P., Glangeaud, F. & Mars, J. (2002). Applications of autoregressive models and time-frequency analysis to the study of volcanic tremor and long-period events. J. Volc. Geotherm. Res., (114), 391417. otwiera się w nowej karcie
  8. Li, C. & Nowack, R.L. (2004). Application of autoregres- sive extrapolation to seismic tomography. Bull. Seism. Soc. Amer., 1456-1466. otwiera się w nowej karcie
  9. Niedźwiecki, M. (1990). Identification of nonstationary stochastic systems using parallel estimation schemes. IEEE Trans. Automat. Contr., (35), 329-334. otwiera się w nowej karcie
  10. Niedźwiecki, M. (1992). Multiple model approach to adap- tive filtering. IEEE Trans. Signal Process., (40), 470- 474. otwiera się w nowej karcie
  11. Niedźwiecki, M. (2000). Identification of Time-varying Processes. Wiley. otwiera się w nowej karcie
  12. Niedźwiecki, M. & Gackowski, S. (2011). On noncausal weighted least squares identification of nonstationary stochastic systems. Automatica, (47), 2239-2245. otwiera się w nowej karcie
  13. Niedźwiecki, M. (2012). Locally adaptive cooperative Kalman smoothing and its application to identification of nonstationary stochastic systems. IEEE Trans. Signal Process., (60), 48-59. otwiera się w nowej karcie
  14. Niedźwiecki, M., Cio lek, M. & Kajikawa, Y. (2017). On adaptive covariance and spectrum estimation of locally stationary multivariate processes. Automatica, (82), 1- 12. otwiera się w nowej karcie
  15. Schlögl, A. (2000). The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applica- tions. Aachen, Germany: Shaker Verlag.
  16. Söderström, T. & Stoica, P. (1988) System Identification, Englewood Cliffs NJ: Prentice-Hall.
  17. Wada, T., Jinnouchi, M. & Matsumura, Y. (1998). Ap- plication of autoregressive modelling for the analysis of clinical and other biological data. Ann. Inst. Statist. Math., (40), 211-227. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 19 razy

Publikacje, które mogą cię zainteresować

Meta Tagi