Polynomial Chaos Expansion in Bio- and Structural Mechanics - Publikacja - MOST Wiedzy

Wyszukiwarka

Polynomial Chaos Expansion in Bio- and Structural Mechanics

Abstrakt

This thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair of ventral hernias. Many uncertainties appear in the modelling of the implant-abdominal wall system. The probabilistic approach proposed in this thesis enables these uncertainties to be propagated to the output of the model and the investigation of their respective influences. The regression-based polynomial chaos expansion method is used here. However, the accuracy of such non-intrusive methods depends on the number and location of sampling points. Finding a universal method to achieve a good balance between accuracy and computational cost is still an open question so different approaches are investigated in this thesis in order to choose an efficient method. Global sensitivity analysis is used to investigate the respective influences of input uncertainties on the variation of the outputs of different models. The uncertainties are propagated to the implant-abdominal wall models in order to draw some conclusions important for further research. Using the expertise acquired from biomechanical models, modelling of historic timber joints and simulations of their mechanical behaviour is undertaken. Such an investigation is important owing to the need for efficient planning of repairs and renovation of buildings of historical value.

Informacje szczegółowe

Kategoria:
Doktoraty, rozprawy habilitacyjne, nostryfikacje
Typ:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Język:
angielski
Rok wydania:
2018
Bibliografia: test
  1. Abdelounis, H. B., Nicolle, S., Ottenio, M., Beillas, P., and Mitton, D. Effect of two loading rates on the elasticity of the human anterior rectus sheath. Journal of the mechanical behavior of biomedical materials 20 (2013), 1-5. otwiera się w nowej karcie
  2. Ambroziak, A., and Kłosowski, P. A four-node 3d isoparametric membrane element. Task Quarterly 10, 1 (2006), 35-47.
  3. Ambroziak, A., and Kłosowski, P. Influence of thermal effects on mechanical properties of pvdf-coated fabric. Journal of Reinforced Plastics and Composites 33, 7 (2014), 663-673. otwiera się w nowej karcie
  4. Ambroziak, A., Szepietowska, K., and Lubowiecka, I. Mechanical properties of mosquito nets in the context of hernia repair. Computer methods in biomechanics and biomedical engineering 19, 3 (2016), 286-296. otwiera się w nowej karcie
  5. Antille, G., Weinberg, A., et al. A Study of D-optimal Designs Efficiency for Polynomial Regression. Université de Genève/Faculté des sciences économiques et sociales, 2000.
  6. Anurov, M., Titkova, S., and Oettinger, A. Impact of position of light mesh endoprosthesis with anisotropic structure for the efficiency of anterior abdominal wall reconstruction. Bulletin of experimental biology and medicine 149, 4 (2010), 440-444. otwiera się w nowej karcie
  7. Astruc, L., De Meulaere, M., Witz, J.-F., Nováček, V., Turquier, F., Hoc, T., and Brieu, M. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues. Journal of the mechanical behavior of biomedical materials 82 (2018), 45-50. otwiera się w nowej karcie
  8. Avril, S., and Evans, S. Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics. Springer, 2017. otwiera się w nowej karcie
  9. Bedon, C., Rinaldin, G., and Fragiacomo, M. Non-linear modelling of the in-plane seismic behaviour of timber blockhaus log-walls. Engineering Structures 91 (2015), 112-124. otwiera się w nowej karcie
  10. Bensley, R. P., Schermerhorn, M. L., Hurks, R., Sachs, T., Boyd, C. A., O'Malley, A. J., Cotterill, P., and Landon, B. E. Risk of late-onset adhesions and incisional hernia repairs after surgery. Journal of the American College of Surgeons 216, 6 (2013), 1159-1167. otwiera się w nowej karcie
  11. Berveiller, M., Sudret, B., and Lemaire, M. Stochastic finite element: a non intrusive approach by regression. Revue européenne de mécanique numérique 15, 1-2-3 (2006), 81-92. otwiera się w nowej karcie
  12. Bielewicz, E., and Górski, J. Shells with random geometric imperfections simulation-based approach. International journal of non-linear mechanics 37, 4-5 (2002), 777-784. otwiera się w nowej karcie
  13. Bielski, P., and Lubowiecka, I. Surface sliding in human abdominal wall numerical models: comparison of single-surface and multi-surface composites. In Shell Structures. Theory and Applications (2018), vol. 4, pp. 499-502. otwiera się w nowej karcie
  14. Blatman, G., and Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics 25, 2 (2010), 183-197. otwiera się w nowej karcie
  15. Blatman, G., and Sudret, B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliability Engineering & System Safety 95, 11 (2010), 1216-1229. otwiera się w nowej karcie
  16. Blatman, G., Sudret, B., and Berveiller, M. Quasi random numbers in stochastic finite element analysis. Mécanique & Industries 8, 3 (2007), 289-297. otwiera się w nowej karcie
  17. Blau, P. J. The significance and use of the friction coefficient. Tribology International 34, 9 (2001), 585-591. otwiera się w nowej karcie
  18. Breuing, K., Butler, C. E., Ferzoco, S., Franz, M., Hultman, C. S., Kilbridge, J. F., Rosen, M., Silverman, R. P., Vargo, D., Group, V. otwiera się w nowej karcie
  19. H. W., et al. Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery 148, 3 (2010), 544-558.
  20. Brites, R. D., Neves, L. C., Machado, J. S., Lourenço, P. B., and Sousa, H. S. Reliability analysis of a timber truss system subjected to decay. Engineering structures 46 (2013), 184-192. otwiera się w nowej karcie
  21. Brown, C., and Finch, J. Which mesh for hernia repair? The Annals of The Royal College of Surgeons of England 92, 4 (2010), 272-278. otwiera się w nowej karcie
  22. Brown, S. H. Mechanically relevant consequences of the composite laminate-like design of the abdominal wall muscles and connective tissues. Medical Engineering and Physics 34, 4 (2012), 521-523. otwiera się w nowej karcie
  23. Brown, S. H., Carr, J. A., Ward, S. R., and Lieber, R. L. Passive mechanical properties of rat abdominal wall muscles suggest an important role of the extracellular connective tissue matrix. Journal of Orthopaedic Research 30, 8 (2012), 1321-1326. otwiera się w nowej karcie
  24. Brown, S. H., and McGill, S. M. Transmission of muscularly generated force and stiffness between layers of the rat abdominal wall. Spine 34, 2 (2009), E70-E75. otwiera się w nowej karcie
  25. Brown, S. H., and McGill, S. M. A comparison of ultrasound and electromyography measures of force and activation to examine the mechanics of abdominal wall contraction. Clinical biomechanics 25, 2 (2010), 115-123. otwiera się w nowej karcie
  26. Bukała, J., Kwiatkowski, P., and Małachowski, J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybernetics and Biomedical Engineering 36, 1 (2016), 145-156. otwiera się w nowej karcie
  27. Burnaev, E., Panin, I., and Sudret, B. Effective Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions. Springer International Publishing, Cham, 2016, pp. 165-184. otwiera się w nowej karcie
  28. Burnaev, E., Panin, I., and Sudret, B. Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Annals of Mathematics and Artificial Intelligence 81, 1-2 (2017), 187-207. otwiera się w nowej karcie
  29. Calvo, B., Sierra, M., Grasa, J., Muñoz, M., and Peña, E. Determination of passive viscoelastic response of the abdominal muscle and related constitutive modeling: Stress-relaxation behavior. Journal of the Mechanical Behavior of Biomedical Materials 36 (2014), 47-58. otwiera się w nowej karcie
  30. Chamoin, L., Florentin, E., Pavot, S., and Visseq, V. Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Computers & Structures 106-107, i (2012), 189-195. otwiera się w nowej karcie
  31. Cho, I., Lee, Y., Ryu, D., and Choi, D.-H. Comparison study of sampling methods for computer experiments using various performance measures. Structural and Multidisciplinary Optimization 55, 1 (2017), 221-235. otwiera się w nowej karcie
  32. Choi, S.-K., Grandhi, R. V., Canfield, R. A., and Pettit, C. L. Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA journal 42, 6 (2004), 1191-1198. otwiera się w nowej karcie
  33. Cielątkowska, R. Translocatio. Przeniesienie drewnianych światyń trzech obrzadków. (Translocatio Transfer of wooden temples of the three religions).
  34. Cobb, W. S., Burns, J. M., Kercher, K. W., Matthews, B. D., Norton, H. J., and Heniford, B. T. Normal intraabdominal pressure in healthy adults. Journal of Surgical Research 129, 2 (2005), 231-235. otwiera się w nowej karcie
  35. Cooney, G., Kiernan, A., Winter, D., and Simms, C. Optimized wound closure using a biomechanical abdominal model. British Journal of Surgery 105, 4 (2018), 395-400. otwiera się w nowej karcie
  36. Cooney, G. M., Lake, S. P., Thompson, D. M., Castile, R. M., Winter, D. C., and Simms, C. K. Uniaxial and biaxial tensile stress-stretch response of human linea alba. Journal of the mechanical behavior of biomedical materials 63 (2016), 134-140. otwiera się w nowej karcie
  37. Cooney, G. M., Moerman, K. M., Takaza, M., Winter, D. C., and otwiera się w nowej karcie
  38. Simms, C. K. Uniaxial and biaxial mechanical properties of porcine linea alba. Journal of the Mechanical Behavior of Biomedical Materials 41 (2015), 68-82.
  39. Cordero, A., Hernández-Gascón, B., Pascual, G., Bellón, J., Calvo, B., and Peña, E. Biaxial mechanical evaluation of absorbable and nonabsorbable synthetic surgical meshes used for hernia repair: physiological loads modify anisotropy response. Annals of biomedical engineering 44, 7 (2016), 2181-2188. otwiera się w nowej karcie
  40. Crestaux, T., Le Maître, O., and Martinez, J.-M. Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety 94, 7 (2009), 1161 -1172. Special Issue on Sensitivity Analysis. otwiera się w nowej karcie
  41. Cruz, H., Yeomans, D., Tsakanika, E., Macchioni, N., Jorissen, A., Touza, M., Mannucci, M., and Lourenço, P. B. Guidelines for on-site assessment of historic timber structures. International Journal of Architectural Heritage 9, 3 (2015), 277-289. otwiera się w nowej karcie
  42. de Aguiar, P., Bourguignon, B., Khots, M., Massart, D., and Phan-Than-Luu, R. D-optimal designs. Chemometrics and Intelligent Laboratory Systems 30, 2 (1995), 199 -210. otwiera się w nowej karcie
  43. Deeken, C. R., and Lake, S. P. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. Journal of the mechanical behavior of biomedical materials 74 (2017), 411-427. otwiera się w nowej karcie
  44. Deeken, C. R., Thompson, D. M., Castile, R. M., and Lake, S. P. otwiera się w nowej karcie
  45. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. Journal of the mechanical behavior of biomedical materials 38 (2014), 6-16. otwiera się w nowej karcie
  46. Diaz, P., Doostan, A., and Hampton, J. Sparse polynomial chaos expansions via compressed sensing and d-optimal design. Computer Methods in Applied Mechanics and Engineering 336 (2018), 640 -666. otwiera się w nowej karcie
  47. Drake, R., Vogl, A. W., and Mitchell, A. W. Gray's Basic Anatomy E-Book: with STUDENT CONSULT Online Access. Elsevier Health Sciences, 2012. otwiera się w nowej karcie
  48. Dubois, G., Kheireddine, W., Vergari, C., Bonneau, D., Thoreux, P., Rouch, P., Tanter, M., Gennisson, J.-L., and Skalli, W. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching. Ultrasound in Medicine and Biology 41, 9 (2015), 2284-2291. otwiera się w nowej karcie
  49. Eriksen, J., Gögenur, I., and Rosenberg, J. Choice of mesh for laparoscopic ventral hernia repair. Hernia 11, 6 (2007), 481-492. otwiera się w nowej karcie
  50. Fajraoui, N., Marelli, S., and Sudret, B. On optimal experimental designs for sparse polynomial chaos expansions. arXiv preprint arXiv:1703.05312 (2017). otwiera się w nowej karcie
  51. Fedorov, V. V. Theory of optimal experiments. Academic Press, INC (english translation), 1972.
  52. Fedorov, V. V., and Hackl, P. Model-oriented design of experiments, vol. 125. Springer Science & Business Media, 2012. otwiera się w nowej karcie
  53. Fishman, G. S. Monte Carlo. Springer New York, New York, NY, 1996.
  54. Förstemann, T., Trzewik, J., Holste, J., Batke, B., Konerding, M., Wolloscheck, T., and Hartung, C. Forces and deformations of the abdominal wall -A mechanical and geometrical approach to the linea alba. Journal of Biomechanics 44, 4 (2011), 600-606. otwiera się w nowej karcie
  55. Frey, C. H., and Patil, S. R. Identification and review of sensitivity analysis methods. Risk analysis 22, 3 (2002), 553-578.
  56. Gao, Z., and Zhou, T. On the choice of design points for least square polynomial approximations with application to uncertainty quantification. Communications in Computational Physics 16, 2 (2014), 365-381. otwiera się w nowej karcie
  57. Gennisson, J.-L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., and
  58. Tanter, M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in medicine and biology 36, 5 (2010), 789-801.
  59. Ghanem, R. G., and Spanos, P. D. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, 1991. otwiera się w nowej karcie
  60. Gillion, J., Sanders, D., Miserez, M., and Muysoms, F. The economic burden of incisional ventral hernia repair: a multicentric cost analysis. Hernia 20, 6 (2016), 819-830. otwiera się w nowej karcie
  61. Giunta, A. A., Wojtkiewicz, S. F., Eldred, M. S., et al. Overview of modern design of experiments methods for computational simulations. In Proceedings of the 41st AIAA aerospace sciences meeting and exhibit, AIAA-2003-0649 (2003). otwiera się w nowej karcie
  62. Górski, J., Mikulski, T., Oziębło, M., and Winkelmann, K. Effect of geometric imperfections on aluminium silo capacities. Stahlbau 84, 1 (2015), 52-57. otwiera się w nowej karcie
  63. Grasa, J., Sierra, M., Lauzeral, N., Muñoz, M., Miana-Mena, F., and Calvo, B. Active behavior of abdominal wall muscles: Experimental results and numerical model formulation. Journal of the mechanical behavior of biomedical materials 61 (2016), 444-454. otwiera się w nowej karcie
  64. Gräßel, D., Prescher, A., Fitzek, S., Keyserlingk, D. G. V., and Axer, H. Anisotropy of human linea alba: A biomechanical study. Journal of Surgical Research 124, 1 (2005), 118-125. otwiera się w nowej karcie
  65. Green, D. W., Winandy, J. E., and Kretschmann, D. E. Wood handbook-Wood as an Engineering Material. Madison, 1999.
  66. Grossi, P., Sartori, T., Giongo, I., and Tomasi, R. Analysis of timber log-house construction system via experimental testing and analytical modelling. Construction and Building Materials 102 (2016), 1127-1144. otwiera się w nowej karcie
  67. Guérin, G., and Turquier, F. Impact of the defect size, the mesh overlap and the fixation depth on ventral hernia repairs: a combined experimental and numerical approach. Hernia 17, 5 (2013), 647-655. otwiera się w nowej karcie
  68. Hadigol, M., and Doostan, A. Least squares polynomial chaos expansion: A review of sampling strategies. Computer Methods in Applied Mechanics and Engineering 332 (2017), 382 -407. otwiera się w nowej karcie
  69. Hadjikov, L., Kirilova, M., Stoytchev, S., and Pashkouleva, D. Visco-elastic mechanical behaviour of human abdominal fascia. Series on Biomechanics 1, 1 (2007), 39-46.
  70. Hamby, D. M. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment 32, 2 (1994), 135-154. otwiera się w nowej karcie
  71. Hernández, B., Pena, E., Pascual, G., Rodriguez, M., Calvo, B., Doblaré, M., and Bellón, J. Mechanical and histological characterization of the abdominal muscle. a previous step to modelling hernia surgery. Journal of the mechanical behavior of biomedical materials 4, 3 (2011), 392-404. otwiera się w nowej karcie
  72. Hernández-Gascón, B., Espés, N., Pena, E., Pascual, G., Bellón, J., and Calvo, B. Computational framework to model and design surgical meshes for hernia repair. Computer methods in biomechanics and biomedical engineering 17, 10 (2014), 1071-1085. otwiera się w nowej karcie
  73. Hernández-Gascón, B., Mena, A., Pena, E., Pascual, G., Bellón, J., and Calvo, B. Understanding the passive mechanical behavior of the human abdominal wall. Annals of biomedical engineering 41, 2 (2013), 433-444. otwiera się w nowej karcie
  74. Hernández-Gascón, B., Peña, E., Grasa, J., Pascual, G., Bellón, J. M., and Calvo, B. Mechanical response of the herniated human abdomen to the placement of different prostheses. Journal of biomechanical engineering 135, 5 (2013), 051004. otwiera się w nowej karcie
  75. Hernández-Gascón, B., Peña, E., Melero, H., Pascual, G., Doblaré, M., Ginebra, M., Bellón, J., and Calvo, B. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall. Acta Biomaterialia 7, 11 (2011), 3905-3913. otwiera się w nowej karcie
  76. Hernández-Gascón, B., Peña, E., Pascual, G., Rodríguez, M., Bellón, J., and Calvo, B. Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects. Journal of the mechanical behavior of biomedical materials 5, 1 (2012), 257-271. otwiera się w nowej karcie
  77. Higham, N. J. Computing the nearest correlation matrix-a problem from finance. IMA journal of Numerical Analysis 22, 3 (2002), 329-343. otwiera się w nowej karcie
  78. Hollinsky, C., and Sandberg, S. Measurement of the tensile strength of the ventral abdominal wall in comparison with scar tissue. Clinical Biomechanics 22, 1 (2007), 88-92. otwiera się w nowej karcie
  79. Bibliography [75] Horbach, A. J., Duong, M. T., and Staat, M. Modelling of compressible and orthotropic surgical mesh implants based on optical deformation measurement. Journal of the mechanical behavior of biomedical materials 74 (2017), 400-410. otwiera się w nowej karcie
  80. Hristov, P., DiazDelaO, F., Flores, E. S., Guzmán, C., and Farooq, U. Probabilistic sensitivity analysis to understand the influence of micromechanical properties of wood on its macroscopic response. Composite Structures 181 (2017), 229-239. otwiera się w nowej karcie
  81. Hu, C., and Youn, B. D. Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Structural and Multidisciplinary Optimization 43, 3 (2011), 419-442. otwiera się w nowej karcie
  82. Huberts, W., Donders, W., Delhaas, T., and Vosse, F. Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model. International Journal for numerical methods in biomedical engineering 30, 12 (2014), 1679-1704. otwiera się w nowej karcie
  83. Humphrey, J. D. Continuum biomechanics of soft biological tissues. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2003), vol. 459, The Royal Society, pp. 3-46. otwiera się w nowej karcie
  84. Iooss, B., and Lemaître, P. A review on global sensitivity analysis methods. In Uncertainty management in simulation-optimization of complex systems. otwiera się w nowej karcie
  85. Iooss, B., and Saltelli, A. Introduction to sensitivity analysis. In Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, and H. Owhadi, Eds. Springer International Publishing, 2017.
  86. Isukapalli, S. S. Uncertainty Analysis of Transport-Transformation Models. PhD thesis, Graduate School New Brunswick, 1999.
  87. JCSS. Probabilistic Model. Joint committee on structural safety. www. jcss. ethz. ch (2001). otwiera się w nowej karcie
  88. Junge, K., Klinge, U., Prescher, A., Giboni, P., Niewiera, M., and Schumpelick, V. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5, 3 (2001), 113-118.
  89. Junge, K., Klinge, U., Prescher, A., Giboni, P., Niewiera, M., and Schumpelick, V. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5, 3 (2001), 113-118. Bibliography
  90. Kahan, L. G., Guertler, C., Blatnik, J. A., and Lake, S. P. Validation of single c-arm fluoroscopic technique for measuring in vivo abdominal wall deformation. Journal of biomechanical engineering 139, 8 (2017), 084502. otwiera się w nowej karcie
  91. Kahan, L. G., Lake, S. P., McAllister, J. M., Tan, W. H., Yu, J., Thompson, D., Brunt, L. M., and Blatnik, J. A. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model. Surgical endoscopy 32, 2 (2018), 820-830. otwiera się w nowej karcie
  92. Kandler, G., and Füssl, J. A probabilistic approach for the linear behaviour of glued laminated timber. Engineering Structures 148 (2017), 673-685. otwiera się w nowej karcie
  93. Karhunen, K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung, vol. 37. Universitat Helsinki, 1947. otwiera się w nowej karcie
  94. Khuri, A. I., and Cornell, J. A. Response surfaces: designs and analyses, vol. 152. CRC press, 1996. otwiera się w nowej karcie
  95. Kirilova, M., Stoytchev, S., Pashkouleva, D., and Kavardzhikov, V. Experimental study of the mechanical properties of human abdominal fascia. Medical Engineering & Physics 33, 1 (2011), 1-6. otwiera się w nowej karcie
  96. Klein, A., and Grabner, M. Analysis of construction timber in rural austria: Wooden log walls. International Journal of Architectural Heritage 9, 5 (2015), 553-563. otwiera się w nowej karcie
  97. Klinge, U., Klosterhalfen, B., Conze, J., Limberg, W., Obolenski, B., Öttinger, A., and Schumpelick, V. Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. European Journal of Surgery 164, 12 (1998), 951-960. otwiera się w nowej karcie
  98. Kłosowski, P., Komar, W., and Woźnica, K. Finite element description of nonlinear viscoelastic behaviour of technical fabric. Construction and Building Materials 23, 2 (2009), 1133-1140. otwiera się w nowej karcie
  99. Kłosowski, P., Lubowiecka, I., Pestka, A., and Szepietowska, K. Historical carpentry corner log joints-numerical analysis within stochastic framework. (submitted). otwiera się w nowej karcie
  100. Klosterhalfen, B., Junge, K., and Klinge, U. The lightweight and large porous mesh concept for hernia repair. Expert review of medical devices 2, 1 (2005), 103-117. otwiera się w nowej karcie
  101. Konerding, M., Chantereau, P., Delventhal, V., Holste, J.-L., and Ackermann, M. Biomechanical and histological evaluation of abdominal wall compliance with intraperitoneal onlay mesh implants in rabbits: A comparison of six different state-of-the-art meshes. Medical Engineering and Physics 34, 7 (2012), 806-816. otwiera się w nowej karcie
  102. Kucherenko, S., Tarantola, S., and Annoni, P. Estimation of global sensitivity indices for models with dependent variables. Computer Physics Communications 183, 4 (2012), 937-946. otwiera się w nowej karcie
  103. Le Gratiet, L., Marelli, S., and Sudret, B. Metamodel-based sensitivity analysis: Polynomial chaos expansions and gaussian processes. In Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, and H. Owhadi, Eds. Springer International Publishing, 2017. otwiera się w nowej karcie
  104. Le Maître, O. P., and Knio, O. M. Spectral Methods for Uncertainty Quantification. Scientific Computation. Springer Netherlands, Dordrecht, 2010. otwiera się w nowej karcie
  105. Le Maître, O. P., Reagan, M. T., Najm, H. N., Ghanem, R. G., and Knio, O. M. A stochastic projection method for fluid flow: II. random process. Journal of Computational Physics 181, 1 (2002), 9-44.
  106. Levillain, A., Orhant, M., Turquier, F., and Hoc, T. Contribution of collagen and elastin fibers to the mechanical behavior of an abdominal connective tissue. Journal of the mechanical behavior of biomedical materials 61 (2016), 308-317. otwiera się w nowej karcie
  107. Loève, M. Probability Theory I, vol. 45 of Graduate Texts in Mathematics. Springer New York, New York, NY, 1977. otwiera się w nowej karcie
  108. Lubowiecka, I. Behaviour of orthotropic surgical implant in hernia repair due to the material orientation and abdomen surface deformation. Computer methods in biomechanics and biomedical engineering 18, 3 (2015), 223-232. otwiera się w nowej karcie
  109. Lubowiecka, I. Mathematical modelling of implant in an operated hernia for estimation of the repair persistence. Computer methods in biomechanics and biomedical engineering 18, 4 (2015), 438-445. otwiera się w nowej karcie
  110. Lubowiecka, I., Szepietowska, K., Szymczak, C., and Tomaszewska, A. Preliminary study on the optimal choice of an implant and its orientation in ventral hernia repair. Journal of Theoretical and Applied Mechanics 54, 2 (2016), 411-421. otwiera się w nowej karcie
  111. Lubowiecka, I., Szepietowska, K., Tomaszewska, A., and Szymczak, C. Mechanical compatibility of implants used in hernia repair with abdominal wall. In Shell Structures. Theory and Applications (2014), vol. 3, pp. 351-354. otwiera się w nowej karcie
  112. Lubowiecka, I., Szymczak, C., Tomaszewska, A., and Śmietański, M. A fem membrane model of human fasciasynthetic implant system in a case of a stiff ventral hernia orifice. In Shell Structures. Theory and Applications (2010), vol. 2, pp. 311-314.
  113. Lubowiecka, I., Tomaszewska, A., Szepietowska, K., Szymczak, C., Lochodziejewska-Niemierko, M., and Chmielewski, M. Membrane model of human abdominal wall. simulations vs. in vivo measurements. In Shell Structures. Theory and Applications (2018), vol. 4, pp. 503-506. otwiera się w nowej karcie
  114. Lyons, M., Mohan, H., Winter, D., and Simms, C. Biomechanical abdominal wall model applied to hernia repair. British Journal of Surgery 102, 2 (2015), e133-e139. otwiera się w nowej karcie
  115. Lyons, M., Winter, D. C., and Simms, C. K. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension. Journal of biomechanics 47, 8 (2014), 1876-1884. otwiera się w nowej karcie
  116. Marieb, E. Essentials of human anatomy and physiology 9th ed san francisco, 2009.
  117. Martins, P., Peña, E., Jorge, R. M. N., Santos, a., Santos, L., Mascarenhas, T., and Calvo, B. Mechanical characterization and constitutive modelling of the damage process in rectus sheath. Journal of the mechanical behavior of biomedical materials 8 (2012), 111-22. otwiera się w nowej karcie
  118. Maurer, M., Röhrnbauer, B., Feola, A., Deprest, J., and Mazza, E. Mechanical biocompatibility of prosthetic meshes: A comprehensive protocol for mechanical characterization. Journal of the mechanical behavior of biomedical materials 40 (2014), 42-58. otwiera się w nowej karcie
  119. Mazza, E., and Ehret, A. E. Mechanical biocompatibility of highly deformable biomedical materials. Journal of the mechanical behavior of biomedical materials 48 (2015), 100-124. otwiera się w nowej karcie
  120. McKay, M. D., Beckman, R. J., and Conover, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 1 (2000), 55-61. otwiera się w nowej karcie
  121. McKenzie, W., and Karpovich, H. The frictional behaviour of wood. Wood science and technology 2, 2 (1968), 139-152. otwiera się w nowej karcie
  122. Mleczek, A. Opracowanie wyników badań wytrzymałościowych dotyczących zginania drewna. Tech. rep., Gdańsk University of Technology, Department of Structural Mechanics, 2016.
  123. Mleczek, A., and Kłosowski, P. Numerical analysis of the carpentry joints applied in the traditional wooden structures. In Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues: Proceedings of the 3rd otwiera się w nowej karcie
  124. Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM), Gdansk, Poland, 8-11 September 2015 (2016), CRC Press, p. 409. otwiera się w nowej karcie
  125. Morokoff, W. J., and Caflisch, R. E. Quasi-Random Sequences and Their Discrepancies. SIAM J. SCl. COMPUT 15, 6 (1994), 1251-1279. otwiera się w nowej karcie
  126. Navarro, M., Witteveen, J., and Blom, J. Polynomial chaos expansion for general multivariate distributions with correlated variables. arXiv preprint arXiv:1406.5483 (2014). otwiera się w nowej karcie
  127. Niederreiter, H. Quasi-monte carlo methods and pseudo-random numbers. Bulletin of the American Mathematical Society 84, 6 (1978), 957-1041. otwiera się w nowej karcie
  128. Nowak, T. P., Jasieńko, J., and Hamrol-Bielecka, K. In situ assessment of structural timber using the resistance drilling method-evaluation of usefulness. Construction and Building Materials 102 (2016), 403-415. otwiera się w nowej karcie
  129. Pachera, P., Pavan, P., Todros, S., Cavinato, C., Fontanella, C., and Natali, A. A numerical investigation of the healthy abdominal wall structures. Journal of biomechanics 49, 9 (2016), 1818-1823. otwiera się w nowej karcie
  130. Palma, P., Garcia, H., Ferreira, J., Appleton, J., and Cruz, H. Behaviour and repair of carpentry connections-rotational behaviour of the rafter and tie beam connection in timber roof structures. Journal of Cultural Heritage 13, 3 (2012), S64-S73. otwiera się w nowej karcie
  131. Parisi, M. A., and Cordié, C. Mechanical behavior of double-step timber joints. Construction and Building Materials 24, 8 (2010), 1364-1371. otwiera się w nowej karcie
  132. Parisi, M. A., and Piazza, M. Mechanics of plain and retrofitted traditional timber connections. Journal of Structural Engineering 126, 12 (2000), 1395-1403. Bibliography otwiera się w nowej karcie
  133. Pestka, A., Kłosowski, P., Lubowiecka, I., and Krajewski, M. Influence of wood moisture on strength and elastic modulus for pine and fir wood subjected to 4-point bending tests. In Proceedings of World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (2018). submitted. otwiera się w nowej karcie
  134. Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software 79 (2016), 214-232. otwiera się w nowej karcie
  135. Podwojewski, F., Otténio, M., Beillas, P., Guérin, G., Turquier, F., and Mitton, D. Mechanical response of animal abdominal walls in vitro: Evaluation of the influence of a hernia defect and a repair with a mesh implanted intraperitoneally. Journal of Biomechanics 46, 3 (2013), 561 -566. otwiera się w nowej karcie
  136. Podwojewski, F., Otténio, M., Beillas, P., Guérin, G., Turquier, F., and Mitton, D. Mechanical response of human abdominal walls ex vivo: Effect of an incisional hernia and a mesh repair. Journal of the Mechanical Behavior of Biomedical Materials 38 (2014), 126 -133. otwiera się w nowej karcie
  137. Poulose, B., Shelton, J., Phillips, S., Moore, D., Nealon, W., Penson, D., Beck, W., and Holzman, M. Epidemiology and cost of ventral hernia repair: making the case for hernia research. Hernia 16, 2 (2012), 179-183. otwiera się w nowej karcie
  138. Prasad, A. K., Ahadi, M., Thakur, B. S., and Roy, S. Accurate polynomial chaos expansion for variability analysis using optimal design of experiments. In Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2015 IEEE MTT-S International Conference on (2015), IEEE, pp. 1-4. otwiera się w nowej karcie
  139. Qadri, S. J. F., Khan, M., Wani, S. N., Nazir, S. S., and Rather, A. Laparoscopic and open incisional hernia repair using polypropylene mesh-a comparative single centre study. International Journal of Surgery 8, 6 (2010), 479-483. otwiera się w nowej karcie
  140. Röhrnbauer, B., Kress, G., and Mazza, E. A physically based structural model for a textile prosthetic mesh. International Journal of Solids and Structures 51, 3-4 (2014), 633-646. otwiera się w nowej karcie
  141. Röhrnbauer, B., and Mazza, E. A non-biological model system to simulate the in vivo mechanical behavior of prosthetic meshes. Journal of the mechanical behavior of biomedical materials 20 (2013), 305-315. otwiera się w nowej karcie
  142. Röhrnbauer, B., and Mazza, E. Uniaxial and biaxial mechanical characterization of a prosthetic mesh at different length scales. Journal of the mechanical behavior of biomedical materials 29 (2014), 7-19. otwiera się w nowej karcie
  143. Saberski, E., Orenstein, S., and Novitsky, Y. Anisotropic evaluation of synthetic surgical meshes. Hernia 15, 1 (2011), 47-52. otwiera się w nowej karcie
  144. Saltelli, A., Chan, K., Scott, E. M., et al. Sensitivity analysis. Wiley New York, 2000.
  145. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. Global sensitivity analysis: the primer. John Wiley & Sons, 2008. otwiera się w nowej karcie
  146. Santamaría, V. A., Siret, O., Badel, P., Guerin, G., Novacek, V., Turquier, F., and Avril, S. Material model calibration from planar tension tests on porcine linea alba. Journal of the Mechanical Behavior of Biomedical Materials 43 (2015), 26 -34.
  147. Sauerland, S., Walgenbach, M., Habermalz, B., Seiler, C. M., and Miserez, M. Laparoscopic versus open surgical techniques for ventral or incisional hernia repair. The Cochrane Library (2011). otwiera się w nowej karcie
  148. Schoenmaeckers, E. J., Wassenaar, E. B., Raymakers, J. T., and Rakic, S. Bulging of the mesh after laparoscopic repair of ventral and incisional hernias. JSLS: Journal of the Society of Laparoendoscopic Surgeons 14, 4 (2010), 541. otwiera się w nowej karcie
  149. Simón-Allué, R., Calvo, B., Oberai, A., and Barbone, P. Towards the mechanical characterization of abdominal wall by inverse analysis. Journal of the Mechanical Behavior of Biomedical Materials 66 (2017), 127-137. otwiera się w nowej karcie
  150. Simón-Allué, R., Hernández-Gascón, B., Lèoty, L., Bellón, J., Peña, E., and Calvo, B. Prostheses size dependency of the mechanical response of the herniated human abdomen. Hernia 20, 6 (2016), 839-848. otwiera się w nowej karcie
  151. Simón-Allué, R., Montiel, J., Bellón, J., and Calvo, B. Developing a new methodology to characterize in vivo the passive mechanical behavior of abdominal wall on an animal model. Journal of the mechanical behavior of biomedical materials 51 (2015), 40-49. otwiera się w nowej karcie
  152. Simón-Allué, R., Ortillés, A., and Calvo, B. Mechanical behavior of surgical meshes for abdominal wall repair: In vivo versus biaxial characterization. Journal of the mechanical behavior of biomedical materials 82 (2018), 102-111. Bibliography otwiera się w nowej karcie
  153. Skowronek, M. Probabilistic sensitivity of the limit states of structures using monte carlo simulation. Meccanica 45, 6 (2010), 785-796. otwiera się w nowej karcie
  154. Smith, K. On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12, 1-2 (1918), 1-85. otwiera się w nowej karcie
  155. Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55, 1-3 (2001), 271-280. otwiera się w nowej karcie
  156. Sobol, I. M., and Kucherenko, S. Global sensitivity indices for nonlinear mathematical models. review. Wilmott Mag 1 (2005), 56-61. otwiera się w nowej karcie
  157. Soize, C., and Ghanem, R. Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM Journal on Scientific Computing 26, 2 (2004), 395-410. otwiera się w nowej karcie
  158. Song, C., Alijani, A., Frank, T., Hanna, G., and Cuschieri, A. Elasticity of the living abdominal wall in laparoscopic surgery. Journal of biomechanics 39, 3 (2006), 587-591. otwiera się w nowej karcie
  159. Song, C., Alijani, A., Frank, T., Hanna, G. B., and Cuschieri, A. Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surgical Endoscopy And Other Interventional Techniques 20, 6 (2006), 987-990. otwiera się w nowej karcie
  160. Sørensen, J. D. Framework for robustness assessment of timber structures. Engineering Structures 33, 11 (2011), 3087-3092. otwiera się w nowej karcie
  161. Stefanou, G. The stochastic finite element method: past, present and future. Computer Methods in Applied Mechanics and Engineering 198, 9-12 (2009), 1031-1051. otwiera się w nowej karcie
  162. Stoikes, N., Sharpe, J., Tasneem, H., Roan, E., Paulus, E., Powell, B., Webb, D., Handorf, C., Eckstein, E., Fabian, T., et al. Biomechanical evaluation of fixation properties of fibrin glue for ventral incisional hernia repair. Hernia 19, 1 (2015), 161-166. otwiera się w nowej karcie
  163. Sudret, B. Uncertainty propagation and sensitivity analysis in mechanical models-contributions to structural reliability and stochastic spectral methods. otwiera się w nowej karcie
  164. Habilitationa diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France (2007). otwiera się w nowej karcie
  165. Bibliography otwiera się w nowej karcie
  166. Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety 93, 7 (2008), 964-979. otwiera się w nowej karcie
  167. Sudret, B. Polynomial chaos expansions and stochastic finite element methods. Risk and reliability in geotechnical engineering (2015), 265-300.
  168. Sudret, B., and Der Kiureghian, A. Stochastic Finite Element Methods and Reliability A State-of-the-Art Report. Tech. Rep. November, 2000. otwiera się w nowej karcie
  169. Sullivan, T. J. Introduction to uncertainty quantification. Springer, 2015. otwiera się w nowej karcie
  170. Szepietowska, K., and Lubowiecka, I. Mechanical behaviour of the implant used in human hernia repair under physiological loads. Acta of bioengineering and biomechanics 15, 3 (2013).
  171. Szepietowska, K., Magnain, B., Lubowiecka, I., and Florentin, E. Regression points in non-intrusive polynomial chaos expansion method and d-optimal design. Machine Dynamics Research 41 (2017), 5-16. otwiera się w nowej karcie
  172. Szepietowska, K., Magnain, B., Lubowiecka, I., and Florentin, E. Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling. Structural and Multidisciplinary Optimization 57, 3 (2018), 1391-1409. otwiera się w nowej karcie
  173. Szymczak, C. Elementy teorii projektowania. Wydawnictwo Naukowe PWN, 1998.
  174. Szymczak, C., Lubowiecka, I., Szepietowska, K., and Tomaszewska, A. Two-criteria optimisation problem for ventral hernia repair. Computer Methods in Biomechanics and Biomedical Engineering 20, 7 (2017), 760-769. otwiera się w nowej karcie
  175. Szymczak, C., Lubowiecka, I., Tomaszewska, A., and Śmietański, M. Modeling of the fascia-mesh system and sensitivity analysis of a junction force after a laparoscopic ventral hernia repair. Journal of Theoretical and Applied Mechanics 48, 4 (2010), 933-950.
  176. Szymczak, C., Lubowiecka, I., Tomaszewska, A., and Śmietański, M. Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clinical Biomechanics 27, 2 (2012), 105-110. otwiera się w nowej karcie
  177. Szymczak, C., and Śmietański, M. Selected problems of laparoscopic ventral hernia repair -modeling and simulation. alfa-medica press Gdańsk, 2012. Bibliography otwiera się w nowej karcie
  178. Todros, S., Pachera, P., Baldan, N., Pavan, P. G., Pianigiani, S., Merigliano, S., and Natali, A. N. Computational modeling of abdominal hernia laparoscopic repair with a surgical mesh. International journal of computer assisted radiology and surgery 13, 1 (2018), 73-81. otwiera się w nowej karcie
  179. Todros, S., Pachera, P., Pavan, P. G., and Natali, A. N. Investigation of the mechanical behavior of polyester meshes for abdominal surgery: A preliminary study. Journal of Medical and Biological Engineering (2017), 1-12. otwiera się w nowej karcie
  180. Tomaszewska, A. Mechanical behaviour of knit synthetic mesh used in hernia surgery. Acta of bioengineering and biomechanics 18, 1 (2016).
  181. Tomaszewska, A., Lubowiecka, I., Szymczak, C., Śmietański, M., Meronk, B., Kłosowski, P., and Bury, K. Physical and mathematical modelling of implant-fascia system in order to improve laparoscopic repair of ventral hernia. Clinical Biomechanics 28, 7 (2013), 743 -751. otwiera się w nowej karcie
  182. Torre, E., Marelli, S., Embrechts, P., and Sudret, B. A general framework for uncertainty quantification under non-gaussian input dependencies. arXiv preprint arXiv:1709.08626 (2017). otwiera się w nowej karcie
  183. Tran, D., Mitton, D., Voirin, D., Turquier, F., and Beillas, P. Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo. Journal of Biomechanics 47, 12 (2014), 3056 -3063. otwiera się w nowej karcie
  184. Tran, D., Podwojewski, F., Beillas, P., Ottenio, M., Voirin, D., Turquier, F., and Mitton, D. Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. Journal of the mechanical behavior of biomedical materials 60 (2016), 451-459. otwiera się w nowej karcie
  185. Tse, G., Stutchfield, B., Duckworth, A., De Beaux, A., and Tulloh, B. Pseudo-recurrence following laparoscopic ventral and incisional hernia repair. Hernia 14, 6 (2010), 583-587. otwiera się w nowej karcie
  186. Turányi, T. Sensitivity analysis of complex kinetic systems. tools and applications. Journal of Mathematical Chemistry 5, 3 (1990), 203-248. otwiera się w nowej karcie
  187. Villar, J., Guaita, M., Vidal, P., and Arriaga, F. Analysis of the stress state at the cogging joint in timber structures. Biosystems engineering 96, 1 (2007), 79-90. otwiera się w nowej karcie
  188. Wiener, N. The homogeneous chaos. American Journal of Mathematics 60, 4 (1938), 897-936. otwiera się w nowej karcie
  189. Bibliography otwiera się w nowej karcie
  190. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 20 (2008), 2941-2953. otwiera się w nowej karcie
  191. Winkelmann, K., and Górski, J. The use of response surface methodology for reliability estimation of composite engineering structures. Journal of Theoretical and Applied Mechanics 52, 4 (2014), 1019-1032. otwiera się w nowej karcie
  192. Xiu, D. Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, 2010. otwiera się w nowej karcie
  193. Xiu, D., and Karniadakis, G. E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing 24, 2 (2002), 619-644. otwiera się w nowej karcie
  194. Xu, C., and Gertner, G. Z. Uncertainty and sensitivity analysis for models with correlated parameters. Reliability Engineering & System Safety 93, 10 (2008), 1563-1573. otwiera się w nowej karcie
  195. Xu, M., Li, L., Wang, M., and Luo, B. Effects of surface roughness and wood grain on the friction coefficient of wooden materials for wood-wood frictional pair. Tribology Transactions 57, 5 (2014), 871-878. otwiera się w nowej karcie
  196. Yang, J., Faverjon, B., Dureisseix, D., Swider, P., and Kessissoglou, N. Prediction of the intramembranous tissue formation during perisprosthetic healing with uncertainties. part 1. effect of the variability of each biochemical factor. Computer methods in biomechanics and biomedical engineering 19, 13 (2016), 1378-1386. otwiera się w nowej karcie
  197. Yang, J., Faverjon, B., Dureisseix, D., Swider, P., Marburg, S., Peters, H., and Kessissoglou, N. Prediction of the intramembranous tissue formation during perisprosthetic healing with uncertainties. part 2. global clinical healing due to combination of random sources. Computer methods in biomechanics and biomedical engineering 19, 13 (2016), 1387-1394. otwiera się w nowej karcie
  198. Zein, S., Colson, B., and Glineur, F. An Efficient Sampling Method for Regression-Based Polynomial Chaos Expansion. Communications in Computational Physics 13, 4 (2012), 1173-1188. otwiera się w nowej karcie
  199. Żerdzicki, K., Kłosowski, P., and Woźnica, K. Influence of service ageing on polyester-reinforced polyvinyl chloride-coated fabrics reported through mathematical material models. Textile Research Journal (2018), 0040517518773374. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 37 razy

Publikacje, które mogą cię zainteresować

Meta Tagi