Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting - Publikacja - MOST Wiedzy

Wyszukiwarka

Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting

Abstrakt

Forecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict ice phenomena in the Warta River in Poland in a temperate climate zone. Observational data from eight river gauges during the period 1983–2013 were used. The performance of the model was evaluated using four model fit measures. The results showed that the choice of input variables influenced the accuracy of the developed models. The most important predictors were the nature of phenomena on the day before an observation, as well as water and air temperatures; river flow and water level were less important for predicting the formation of ice phenomena. The modeling results showed that both MLPNN and XGBoost provided promising results for the prediction of ice phenomena. The research results of the present study could also be useful for predicting ice phenomena in other regions.

Cytowania

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Resources-Basel nr 11,
ISSN: 2079-9276
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Graf R., Kolerski T., Zhu S.: Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting// Resources-Basel -Vol. 11,iss. 2 (2022), s.12-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/resources11020012
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 103 razy

Publikacje, które mogą cię zainteresować

Meta Tagi