Abstrakt
Liquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging. Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier based on the Convolutional Neural Network (CNN), allowed significantly improving the classification accuracy. In this work, we take a closer look at this approach and find that similar results can be obtained using significantly smaller models. Additionally, competitive results were achieved using gradient boosting. Since it has another advantage of adding interpretability to the model, we further analyze it in this work.
Cytowania
-
4
CrossRef
-
0
Web of Science
-
2
Scopus
Autorzy (7)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Cygert S., Górski F., Juszczyk P., Lewalski S., Pastuszak K., Czyżewski A., Supernat A.: Towards Cancer Patients Classification Using Liquid Biopsy// Predictive Intelligence in Medicine/ : , 2021, s.221-230
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-030-87602-9_21
- Źródła finansowania:
-
- Medical University of Gdańsk statutory work (ST-23, 02-0023/07)
- SONATA grant of the National Science Centre (2018/31/D/NZ5/01263)
- Projekt Akademia Innowacyjnych Zastosowań Technologii Cyfrowych
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 198 razy
Publikacje, które mogą cię zainteresować
Diagnostic Accuracy of Liquid Biopsy in Endometrial Cancer
- M. Łukasiewicz,
- K. Pastuszak,
- S. Łapińska-Szumczyk
- + 10 autorów
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
- M. A. Jopek,
- K. Pastuszak,
- S. Cygert
- + 5 autorów
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
- K. Pastuszak,
- A. Supernat,
- M. G. Best
- + 8 autorów