The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process - Publikacja - MOST Wiedzy

Wyszukiwarka

The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process

Abstrakt

This paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in the fermentation sludge. The analyses revealed that the implementation of artificial neural networks allowed the prediction of the values of odor intensity and the hedonic tone of the post-fermentation sludge at the level of 30% mean absolute percentage error. Application of the decision tree made it possible to determine what input parameters the fermentation feed should have in order to arrive at the post-fermentation sludge with an odor intensity <2 and hedonic tone >-1. It was shown that the aforementioned phenomenon was influenced by the following factors: concentration of p-xylene, pH, concentration of volatile fatty acids, and concentration of p-cresol.

Cytowania

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 40 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Sustainability nr 11,
ISSN:
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Byliński H., Sobecki A., Gębicki J.: The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process// Sustainability -Vol. 11,iss. 16 (2019), s.4407-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/su11164407
Bibliografia: test
  1. Carrera-Chapela, F.; Donoso-Bravo, A.; Souto, J.A.; Ruiz-Filippi, G. Modeling the odor generation in WWTP: An integrated approach review. Water Air Soil Pollut. 2014, 225. [CrossRef] otwiera się w nowej karcie
  2. Gębicki, J.; Dymerski, T.; Namieśnik, J. Monitoring of Odour Nuisance from Landfill Using Electronic Nose. Chem. Eng. Trans. 2014, 40, 85-90. [CrossRef] otwiera się w nowej karcie
  3. Byliński, H.; Gębicki, J.; Namieśnik, J. Evaluation of Health Hazard Due to Emission of Volatile Organic Compounds from Various Processing Units of Wastewater Treatment Plant. Int. J. Environ. Res. Public Health 2019, 16, 1712. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Sówka, I.; Bezyk, Y.; Grzelka, A.; Miller, U.; Pachurka, Ł. Seasonal odor impact range of selected wastewater treatment plants-Modeling studies using Polish reference model. Water Sci. Technol. 2017, 2017, 422-429. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Byliński, H.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Complementary use of GCxGC-TOF-MS and statistics for differentiation of variety in biosolid samples. Monatshefte für Chemie 2018, 149, 1587. otwiera się w nowej karcie
  6. Stuetz, R.M.; Frechen, F.B. Odours in Wastewater Treatment: Measurement, Modeling and Control; IWA Publishing: London, UK, 2001. otwiera się w nowej karcie
  7. Cieślik, B.; Konieczka, P. Sewage sludge management methods. Challenges and opportunities. Arch. Waste Manag. Environ. Prot. 2016, 18, 15-32. otwiera się w nowej karcie
  8. Grobelak, A.; Grosser, A.; Kacprzak, M.; Kamizela, T. Sewage sludge processing and management in small and medium-sized municipal wastewater treatment plant-new technical solution. J. Environ. Manag. 2019, 234, 90-96. [CrossRef] otwiera się w nowej karcie
  9. Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60-73. [CrossRef] otwiera się w nowej karcie
  10. Lombardi, L.; Nocita, C.; Bettazzi, E.; Fibbi, D.; Carnevale, E. Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Manag. 2017, 69, 365-376. [CrossRef] otwiera się w nowej karcie
  11. Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41-48. [CrossRef] otwiera się w nowej karcie
  12. Świerczek, L.; Cieślik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry-A review. J. Clean. Prod. 2018, 200, 342-356. [CrossRef] otwiera się w nowej karcie
  13. Zhang, Q.; Hu, J.; Lee, D.J.; Chang, Y.; Lee, Y.J. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159-1172. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Kor-Bicakci, G.; Eskicioglu, C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 110, 423-443. [CrossRef] otwiera się w nowej karcie
  15. Cieślik, B.M.; Namieśnik, J.; Konieczka, P. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2015, 90, 1-15. [CrossRef] otwiera się w nowej karcie
  16. Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1-12. [CrossRef] otwiera się w nowej karcie
  17. Byliński, H.; Barczak, R.J.; Gębicki, J.; Namieśnik, J. Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction-mass spectrometry. Environ. Sci. Pollut. Res. 2019, 26, 5500-5513. [CrossRef] [PubMed] otwiera się w nowej karcie
  18. Costa, J.A.V.; de Morais, M.G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 2011, 102, 2-9. [CrossRef] [PubMed] otwiera się w nowej karcie
  19. Blumensaat, F.; Keller, J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res. 2005, 39, 171-183. [CrossRef] otwiera się w nowej karcie
  20. Bareha, Y.; Girault, R.; Jimenez, J.; Trémier, A. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach. Bioresour. Technol. 2018, 263, 425-436. [CrossRef] otwiera się w nowej karcie
  21. Hu, C.; Yan, B.; Wang, K.J.; Xiao, X.M. Modeling the performance of anaerobic digestion reactor by the anaerobic digestion system model (ADSM). J. Environ. Chem. Eng. 2018, 6, 2095-2104. [CrossRef] otwiera się w nowej karcie
  22. Ivanovs, K.; Spalvins, K.; Blumberga, D. Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia 2018, 147, 390-396. [CrossRef] otwiera się w nowej karcie
  23. Hu, Y.; Yang, C.; Dan, J.; Pu, W.; Yang, J. Modeling of expanded granular sludge bed reactor using artificial neural network. J. Environ. Chem. Eng. 2017, 5, 2142-2150. [CrossRef] otwiera się w nowej karcie
  24. Abu Qdais, H.; Bani Hani, K.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359-363. [CrossRef] otwiera się w nowej karcie
  25. Yetilmezsoy, K.; Turkdogan, F.I.; Temizel, I.; Gunay, A. Development of ann-based models to predict biogas and methane productions in anaerobic treatment of molasses wastewater. Int. J. Green Energy. 2013, 10, 885-907. [CrossRef] otwiera się w nowej karcie
  26. Rincón, C.A.; De Guardia, A.; Couvert, A.; Le Roux, S.; Soutrel, I.; Daumoin, M.; Benoist, J.C. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. J. Environ. Manag. 2019, 233, 39-53. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. Andrés, C.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2019, 201, 1-12. [CrossRef] otwiera się w nowej karcie
  28. Mosteller, F.; Tukey, J.W. Data analysis, including statistics. In Handbook of Social Psychology;
  29. Addison-Wesley: Reading, MA, USA, 1968; Volume 2, pp. 1-17.
  30. Gospodarek, M.; Rybarczyk, P.; Szulczyński, B.; Gębicki, J. Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air. Processes 2019, 7, 187. [CrossRef] otwiera się w nowej karcie
  31. Łagód, G.; Duda, S.M.; Majerek, D.; Szutt, A.; Dołhańczuk-Śródka, A. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes 2019, 7, 251. [CrossRef] otwiera się w nowej karcie
  32. Cho, J.H.; Kurup, P.U. Decision tree approach for classification and dimensionality reduction of electronic nose data. Sens. Actuators B Chem. 2011, 160, 542-548. [CrossRef] otwiera się w nowej karcie
  33. Fisher, R.M.; Barczak, R.J.; Suffet, I.H.M.; Hayes, J.E.; Stuetz, R.M. Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing. Sci. Total Environ. 2018, 634, 214-223. [CrossRef] otwiera się w nowej karcie
  34. Barczak, R.J.; Fisher, R.M.; Wang, X.; Stuetz, R.M. Variations of odorous VOCs detected by different assessors via gas chromatography coupled with mass spectrometry and olfactory detection port (ODP) system. Water Sci. Technol. 2018, 77, 759-765. [CrossRef] [PubMed] otwiera się w nowej karcie
  35. Harrison, E.Z.; Oakes, S.R.; Hysell, M.; Hay, A. Organic chemicals in sewage sludges. Sci. Total Environ. 2006, 367, 481-497. [CrossRef] [PubMed] otwiera się w nowej karcie
  36. Marczak, M.; Wolska, L.; Namiesnik, J. Determination of toluene formed during fermentation of sewage sludge. Int. J. Environ. Stud. 2006, 63, 171-178. [CrossRef] otwiera się w nowej karcie
  37. De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for Regression Models. Neurocomputing 2016, 192, 38-48. [CrossRef] otwiera się w nowej karcie
  38. Willmott, K.; Matsuura, C.J. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 10, 79-82. [CrossRef] otwiera się w nowej karcie
  39. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 160 razy

Publikacje, które mogą cię zainteresować

Meta Tagi