Filtry
wszystkich: 917
wybranych: 96
Wyniki wyszukiwania dla: DEGREE
-
The results of the assessment of the degree of deacetylation, antimicrobial activity and cytotoxicity of chitosan materials
Dane BadawczeDane prezentują wyniki pomiarowe stopnia deacetylacji 5 komerycjnych chitozanów, które przetwarzane dwiema metodami oceniono pod kątem aktywności przeciwdrobnoustrojowej i cytotoksyczności względem modelowej linii fibroblastów mysich L929. Ocenie porównawczej poddano materiały chitozanowe otrzymywane klasyczną metodą rozpuszczania w roztworze...
-
The degree of mission implementation, promotion and achievement of goals of the studied universities in Gdańsk, Sopot and Gdynia in 2011
Dane BadawczeAll surveyed universities declare that they have a specific mission. The mission of each organization is nothing but the reason for its existence which distinguishes it from all the others. The mission of non-public universities should translate into tasks that it must perform in order to achieve its goals.
-
BET of TiO2 heated at 400-600 C degrees
Dane BadawczeThese data refer to the results of BET surface area of TiO2, which was treated firstly in autoclave at 150 C degrees for 1h (sample marked as A150), then was further heat treated in Ar or H2 at 400-600 C degrees. As a raw material TiO2 was used, which was a semiproduct from the industrial production of titania white by sulphur method. The raw material...
-
The SEM images of LSCNT sintered at 1200 degrees C in air
Dane BadawczeThe dataset includes SEM images of La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-s sintered at 1200oC under air atmosphere for 12 h. Samples were produced using aqueous soft chemistry methods (Pechini). The grain structure can be seen on higher resolution image.
-
The SEM images of LSCNT reduced at 900 degrees C under H2
Dane BadawczeThe dataset includes SEM image of La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-s sintered at 1200oC under air atmosphere for 12 h and reduced at 900oC under H2 for 10 h. Samples were produced using aqueous soft chemistry methods (Pechini).
-
The SEM images of LSCNT reduced at 800 degrees C under H2
Dane BadawczeThe dataset includes SEM images of La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-s sintered at 1200oC under air atmosphere for 12 h and reduced at 800oC under H2 for 10 h. Samples were produced using aqueous soft chemistry methods (Pechini).
-
The SEM images of LSCNT reduced at 1000 degrees C under H2
Dane BadawczeThe dataset includes SEM images of La0.27Sr0.54Ce0.09Ni0.1Ti0.9O3-s sintered at 1200oC under air atmosphere for 12 h and reduced at 1000oC under H2 for 10 h. Samples were produced using aqueous soft chemistry methods (Pechini).
-
Determination of changes in viscosity of refined oil depending on the temperature (19-96 Celsius degrees).
Dane BadawczeThe rheological characteristics of the refined oil were made on the basis of the viscosity assessment using a Brookfield viscometer with an LV SC4 - 18 spindle and a shear rate of 52.8 s-1 in from temperature 19-96 °C.
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 75 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 65 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 90 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 80 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 45 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 35 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 50 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 70 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapasitor with the use of ZnO coated microsphere-based fiber-optic sensor - 30 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 60 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 40 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 85 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 55 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 100 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Determination of changes in viscosity of high-fructose syrup stability of pectin hydrogels depending on the temperature (25-96 Celsius degrees).
Dane BadawczeThe rheological characteristics of the high-fructose syrup modified stability of pectin (added in a concentration 2% m/m) were made on the basis of the viscosity assessment using a Brookfield viscometer with an LV SC4 - 25 spindle and a shear rate of 0,22 s-1 in the temperature range 25-96 ° C. The data allowed selection of optimal conditions for the...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 200 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 100 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 300 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
The XRD pattern of CeO2/10wt.%Co prepared with BCD
Dane BadawczeThe dataset includes the XRD pattern of CeO2/10wt.%Co. The samples of nanoCeO2 were impregnated with BCD-assisted precursor solution (betacyclodextrin). The dataset includes the 5-90 2theta degree measurement.
-
XRD analysis of the tellurium dioxide thin films
Dane BadawczeTellurium dioxide thin films were deposited by magnetron sputtering method. The XRD analysis of the films annealed at 200, 500, 650 and 700 celsius degree showed appearing of crystalline phase in a higher temeratures.
-
The XRD pattern of CeO2/10wt.%Ni prepared with BCD
Dane BadawczeThe dataset includes the XRD pattern of CeO2/10wt.%Ni. The samples of nanoCeO2 were impregnated with BCD-assisted precursor solution (betacyclodextrin). The dataset includes the 5-90 2theta degree measurement. Nonreduced. Sintered at 400oC for 4h in air.