Filtry
wszystkich: 1265
-
Katalog
- Publikacje 783 wyników po odfiltrowaniu
- Czasopisma 81 wyników po odfiltrowaniu
- Konferencje 27 wyników po odfiltrowaniu
- Osoby 60 wyników po odfiltrowaniu
- Projekty 6 wyników po odfiltrowaniu
- Kursy Online 59 wyników po odfiltrowaniu
- Wydarzenia 4 wyników po odfiltrowaniu
- Dane Badawcze 245 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: DIGITAL HANDWRITTEN SIGNATURE
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 180 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Zastosowanie cyfrowej analizy obrazu w badaniach deformacji analogowego ośrodka rozdrobnionego Taylor-Schneebeli.
PublikacjaW artykule przedstawiono sposób analizy deformacji ośrodka rozdrobnionego, jakim jest materiał Taylora-Schneebeliego, na przykładzie przeprowadzonych badań modelowych i z wykorzystaniem autorskich aplikacji bazujących na algorytmach DIP (ang. digital image processing).
-
Impact of optimization of ALS point cloud on classification
PublikacjaAirborne laser scanning (ALS) is one of the LIDAR technologies (Light Detection and Ranging). It provides information about the terrain in form of a point cloud. During measurement is acquired: spatial data (object’s coordinates X, Y, Z) and collateral data such as intensity of reflected signal. The obtained point cloud is typically applied for generating a digital terrain model (DTM) and a digital surface model (DSM). For DTM...
-
Internet photogrammetry for inspection of seaports
PublikacjaThis paper intends to point out the possibility of using Internet photogrammetry to construct 3D models from the images obtained by means of UAVs (Unmanned Aerial Vehicles). The solutions may be useful for the inspection of ports as to the content of cargo, transport safety or the assessment of the technical infrastructure of port and quays. The solution can be a complement to measurements made by using laser scanning and traditional...
-
Joint Australia and New Zealand Biennial Conference on Digital Image and Vision Computing
Konferencje -
Information Systems &Technologies /SPIE Conference on Digital Video Compression Algorithms & Techniques
Konferencje -
Problems with microprocessor voltage-to-frequency and frequency-to-voltage converters implementation
PublikacjaThe article presents the problems of digital voltage-to-frequency and frequency-to-voltage processing. Transducer systems implemented in microprocessor technology are presented, the timing of signals and functioning algorithms are discussed. An analysis of processing errors has been performed and the results of experimental studies of realized systems are presented.
-
Measurements of relative frequency instability
PublikacjaFrequency constancy can be determined by the change in time for the subsequent periods. The article shows that classical the method of digital period measurement is not suitable for the measurement process. Therefore, a method using an integrating circuit is being proposed. Errors in the measurement of the given method have been analyzed.
-
Outdoor photographic documentation of the Castle in Oświęcim (Małopolskie Voivodeship)
Dane BadawczeThis dataset contains outdoor images of the Castle in Oświęcim (Małopolskie Voivodeship). Retrieved documentation dates from the 19th to 21st centuries. The castle consists of an early Gothic bergfried tower, built at the end of the 13th century, a two-story basement building built on a rectangular plan, and an annexe. The latest image in the dataset...
-
RESEARCH OF PARTIAL DISCHARGE IN THE LABORATORY CONSTRUCTE
PublikacjaNowadays in the Czech Republic begins implementation of new types of leadership system with insulated conductors nowadays. This system is used because of the use of conductors in difficulties to reach terrains and lower failure rate. The finding of specific faults is problem, because today's digital protection are not able to find it.
-
Wojciech Gumiński dr inż.
OsobyWojciech Gumiński ukończył studia na Wydziale Elektroniki, Telekomunikacji I Informatyki w 1991 r. W roku 2003 uzyskał stopień doktora nauk technicznych. Zainteresowania naukowe obejmują architektury sieciowe i protokoły telekomunikacyjne oraz cyfrowe przetwarzanie sygnałów. Uczestniczył jako główny wykonawca w szeregu projektach, między innymi: Inżynieria Internetu Przyszłości, PL-LAB 2020 i Internet na Bałtyku. Publikacje...
-
A new concept of contemporary marketing
PublikacjaPurpose: This conceptual paper aims to propose a new concept of marketing that responds well to the needs of a changing world, taking into account the continuous development of the service economy and the revolution in the development of the Internet and related tools. Methodology/Approach: The proposed concept is based on well-researched theories: service marketing, experience marketing, relationship marketing and digital marketing...
-
Assessment of E-government inclusion policies toward seniors: A framework and case study
PublikacjaDigital exclusion of seniors covers both social and technical drivers that affect the magnitude of this phenomenon. It arises from the fear of technology, reduced manual and mental abilities, socio-economic status, and also the mismatch between the technological environment and the needs of the elderly. The consideration of the needs of seniors are mainly implemented through social policies while the provision of government services...
-
A Direct Modulation for Matrix Converters based on the Onecycle Atomic operation developed in Verilog HDL.
PublikacjaThis paper presents a fast direct Pulse Width Modulation (PWM) algorithm for the Conventional Matrix Converters (CMC) developed in Verilog Hardware Description language (HDL). All PWM duty cycle calculations are performed in one cycle by an atomic operation designed as a digital module using FPGA basic blocks. The algorithm can be extended to any number of output phase. The improved version of the discontinuous Direct Analytic...
-
Trust and distrust in electoral technologies: what can we learn from the failure of electronic voting in the Netherlands (2006/07)
PublikacjaThis paper focuses on the complex dynamics of trust and distrust in digital government technologies by approaching the cancellation of machine voting in the Netherlands (2006-07). This case describes how a previously trusted system can collapse, how paradoxical the relationship between trust and distrust is, and how it interacts with adopting and managing electoral technologies. The analysis stresses how, although...
-
Dis/Trust and data-driven technologies
PublikacjaThis concept paper contextualises, defines, and systematises the concepts of trust and distrust (and their interrelations), providing a critical review of existing literature so as to identify gaps, disjuncture, and continuities in the use of these concepts across the social sciences and in the context of the consolidation of the digital society. Firstly, the development of the concept of trust is explored by looking at its use...
-
OVERALL SET OF BANDSAW TEETH VERSUS METHODS OF MEASUREMENTS
PublikacjaThis article deals with the impact of the manual methods of measurement on the overall set measurement results. It describes the results of the measurement of bandsaw teeth kerf with the use of a micrometer and a digital calliper. It is commonly known that the cutting process causes the wear of cutting tools. The wear of the cutting edge depends on the cutting conditions as well as on the mechanical properties of the processed...
-
Analytical modeling of electric drives for vehicle traction control systems
PublikacjaWheel-torque control bandwidth in vehicle dynamics model is crucial in evaluating optimal tracking ability of tire slip and in analysis of control system stability. Electric drives’ control dynamics are influenced by timing of digital control events, e.g. by sampling instant of motor currents. Reflecting this timing in drive analytical models is therefore important for analysis of vehicle traction systems. The paper considers five...
-
Distributed Detection of Selected Features in Data Streams Using Grid-class Systems
PublikacjaThis chapter describes basic methodology of distributed digital signal processing. A choice of distributed methods of detection of selected features in data streams using grid-class systems is discussed. Problems related to distribution of data for processing are addressed. A mitigating method for data distribution and result merging is described.
-
UAV Survey Images - DTM - Sopot Tombolo (Salient) Measurement - MP2
Dane BadawczeDataset description: Raw images from photogrammetric survey. Object: littoral zone in SopotLocation: Sopot, Pomerania, PolandDrone type: DJI Mavic Pro 2Flight plan: Single GridTarget Product: Digital Terrain ModelDate: 23.11.2019Direct georeferencing: yesMetadata data: yes/GPSGCP: YESGCP Quality: RTKCamera Name: Hasselblad L1D-20cModel type: PerspectiveImage...