Filtry
wszystkich: 31
Wyniki wyszukiwania dla: FILLER MODIFICATION
-
Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification
PublikacjaDespite their popularity and multiplicity of applications, wood–polymer composites (WPCs) still have to overcome particular issues related to their processing and properties. The main aspect is the compatibility with plant-based materials which affects the overall performance of the material. It can be enhanced by strengthening the interfacial adhesion resulting from physical and/or chemical interactions between the matrix and...
-
THE MELT FLOWABILITY AND TENSILE PERFORMANCE OF POLY (-CAPROLACTONE)/BREWERS’ SPENT GRAIN COMPOSITES AS A FUNCTION OF FILLER MODIFICATION
PublikacjaNowadays, it is essential to reduce the environmental impact of products and technologies. Such an approach should be highlighted in all research activities. In the case of polymer composites, it can be realized by introducing by-products or waste materials as fillers. An auspicious example of such material is the brewers’ spent grain, the major byproduct of the beer production. Its chemical composition, relatively similar to conventional...
-
Modification of cellulosic filler with diisocyanates – volatile organic compounds emission assessment and stability of chemical structure over time
PublikacjaThis paper investigated the impact of type and content of diisocyanate on the structure of modified cellulose fillers. Four the most popular isocyanates were applied – isophorone, hexamethylene, toluene and methylene diphenyl diisocyanate – at loadings of 1–15 wt%. Chemical structure, and its short-term storage stability, were investigated for eight weeks. Moreover, the main volatile organic compounds detected during modification,...
-
The Effect of Surface Treatment with Isocyanate and Aromatic Carbodiimide of Thermally Expanded Vermiculite Used as a Functional Filler for Polylactide-Based Composites
PublikacjaIn this work, thermally expanded vermiculite (TE-VMT) was surface modified and used as a filler for composites with a polylactide (PLA) matrix. Modification of vermiculite was realized by simultaneous ball milling with the presence of two PLA chain extenders, aromatic carbodiimide (KI), and 4,4’-methylenebis(phenyl isocyanate) (MDI). In addition to analyzing the particle size of the filler subjected to processing, the efficiency...
-
Rotational molding of polylactide (PLA) composites filled with copper slag as a waste filler from metallurgical industry
PublikacjaThe research work carried out so far indicates the ever wider possibilities and demand for shaping composite products in the rotational molding technology. This trend was the main reason to use waste-based filler from the metallurgical process as a filler for manufacturing polylactide (PLA)-based remolded composites. Copper slag (CS) was introduced in the single-step processing method to PLA matrix at 5, 10, 20, and 35 wt%. The...
-
Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites
PublikacjaThis work aims to describe the coffee silverskin effect as a lignocellulosic waste filler for high-density polyethylene (HDPE) composites development. The main task was to determine various modification effects resulting from the complex chemical composition of coffee silverskin containing compounds with potential antioxidative properties, including caffeine, polyphenols, tannins, or melanoidins. The processing, thermal, physicochemical,...
-
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance
PublikacjaWaste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’...
-
Locally sculptured modification of the electrochemical response of conductive poly(lactic acid) 3D prints by femtosecond laser processing
PublikacjaThis manuscript presents an approach to sculpture high electrochemical activity of the 3D printed electrodes with poly(lactic acid) (PLA) matrix and carbon black (CB) filler by femtosecond laser (FSL) ablation. CB-PLA utility for electrochemical applications depends on a surface modification aiming to remove the PLA and uncover the conductive CB. We have discussed how laser pulse energy is critical for such an activation process....
-
Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology
PublikacjaThis study aims at investigating the dynamic mechanical, dielectric and rheological properties of reinforced polyurethane (PU) nanocomposites containing hydrophilic graphene oxide (GO) and/or hydrophobic modified graphene oxide (mGO) sheets. The organic modification of GO was performed with 4,4′-methylenebis (phenyl isocyanate) (MDI) and the samples were prepared by solvent mixing. We found that addition of mGO provides a more...
-
Recent advances in compatibilization strategies of wood-polymer composites by isocyanates
PublikacjaWood-polymer composites technologies are gaining more and more attention in the scientific community, positively affecting the increase in their industrial applications, for example, automotive, building, 3D printing, etc. Many research works are focused on the improvement in matrix–lignocellulosic filler interactions to produce highly filled composites with satisfying performance properties. In this field of research, using isocyanates...
-
In-Situ Processing of Biocomposites via Reactive Extrusion
PublikacjaLaw regulations, economic and environmental factors are the main causes for the rapidly growing interests in biocomposites’ research, conducted currently in a number of academic and industrial scientific centers. However, weak polymer matrix/filler interactions, common in biocomposites, result in unsatisfactory mechanical properties, which limit their practical applications. From many attempts performed to solve this problem, in-situ...
-
Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – a review
PublikacjaNowadays, waste tire rubber (WTR) management is a growing and serious problem. Therefore, research works focused on the development of cost-effective and environmentally-friendly methods of WTR recycling are fully justified. Incorporation of WTR into polymer matrices and composite materials attracts much attention, because this approach allows sustainable development of industrially applicable waste tires recycling technologies....
-
Comparative Analysis of the Cofee and Cocoa Industry By‑Products on the Performance of Polyethylene‑Based Composites
PublikacjaThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Comparative Analysis of the Coffee and Cocoa Industry By-Products on the Performance of Polyethylene-Based Composites
PublikacjaThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Sustainable Chemically Modified Mater-Bi/Poly(ε-caprolactone)/Cellulose Biocomposites: Looking at the Bulk through the Surface
PublikacjaSustainable polymer composites are progressively under development in a technological paradigm shift from "just use more and more" to "convert into value-added products". The bio-based blends based on Mater-Bi bio-plastic (A) and poly(ε-caprolactone) (B), at a weight ratio of 70:30 (A:B) were developed, followed by the addition of UFC100 cellulose (C) filler to yield 70/30 (w/w) (A:B)/C sustainable biocomposites. The effects of...
-
Insights into Compatibilization of Poly(ε-caprolactone)-based Biocomposites with Diisocyanates as Modifiers of Cellulose Fillers
PublikacjaThis study aimed to analyze the impact of cellulose fillers’ modification with diisocyanates on the performance of composites based on the poly(ε-caprolactone) (PCL) matrix. Four most commonly used diisocyantes (isophorone, hexamethylene, toluene, and methylene diphenyl) were applied as modifiers of cellulose fillers (5 and 15 wt% per mass of filler). Modified fillers were introduced in the amount of 30 wt% into the PCL matrix....
-
Recycling of Waste Rubber by Thermo-Mechanical Treatment in a Twin-Screw Extruder
PublikacjaRecycling of waste tires is a significant issue considering both environmental and economic aspects. One of the leading recycling routes is the shredding of tires resulting in the generation of ground tire rubber. This material can be easily introduced into various polymer matrices as a filler, reducing the use of conventionally applied petroleum-based materials. In such cases, it is essential to ensure sufficient interfacial compatibility,...
-
Sustainable chemically modified poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(ε-caprolactone)/cellulose biocomposites: looking at the bulk through the surface
PublikacjaSustainable polymer composites (or biocomposites) based on renewable and green polymers are progressively under development in a technological paradigm shift from “just use more and more” to “convert into value-added products”. Therefore, significant efforts should focus not only on their reduced environmental impact but also on maximizing their performance and broadening their application range. Herein, the bio-based blends based...
-
Multiple Reprocessing of Conductive PLA 3D-Printing Filament: Rheology, Morphology, Thermal and Electrochemical Properties Assessment
PublikacjaAdditive manufacturing technologies are gaining more and more attention, resulting in the development or modification of 3D printing techniques and dedicated materials. On the other hand, economic and ecological aspects force the industry to develop material recycling strategies. In this work, the multiple reprocessing of a commercially available PLA conductive composite with carbon black filler, dedicated to 3D printing, was investigated....
-
Surface Treatment of Rubber Waste
PublikacjaThis chapter deals with the study of different approaches to improve the compatibility of waste rubber with polymeric matrixes of high density polyethylene (HDPE) by using surface treatments to increase adhesion. Different surface treatments such as etching with sulphuric and nitric acids, the use of a silane as a coupling agent and chlorination with trichloroisocyanuric acid (TCI) have been applied. The modification of waste rubber...
-
The Impact of Ground Tire Rubber Oxidation with H2O2 and KMnO4 on the Structure and Performance of Flexible Polyurethane/Ground Tire Rubber Composite Foams
PublikacjaThe use of waste tires is a very critical issue, considering their environmental and economic implications. One of the simplest and the least harmful methods is conversion of tires into ground tire rubber (GTR), which can be introduced into different polymer matrices as a filler. However, these applications often require proper modifications to provide compatibility with the polymer matrix. In this study, we examined the impact...
-
Reclaimed rubber in-situ grafted with soybean oil as a novel green reactive plasticizer in SBR/silica compounds
PublikacjaPolymer recycling and biodegradable polymeric materials are two major routes towards the sustainable development of polymer materials which contributes to the management of waste. In this regard, an eco-friendly approach is presented wherein high reclaiming degree of ground tire rubber (GTR) was achieved by low-temperature oxidation under swollen action of soybean oil. In-situ reclaimed GTR with soybean oil was cured into reactive...
-
Insights into the Thermo-Mechanical Treatment of Brewers’ Spent Grain as a Potential Filler for Polymer Composites
PublikacjaThis paper investigated the impact of twin-screw extrusion parameters on the properties of brewers’ spent grain. The chemical structure, antioxidant activity, particle size, and color properties, as well as the emission of volatile organic compounds during extrusion, were investigated. The main compounds detected in the air during modifications were terpenes and terpenoids, such as α-pinene, camphene, 3-carene, limonene, or terpinene....
-
Management of ground tire rubber waste by incorporation into polyurethane-based composite foams
PublikacjaRapid economic growth implicated the developing multiple industry sectors, including the automotive branch, increasing waste generation since recycling and utilization methods have not been established simultaneously. A very severe threat is the generation of enormous amounts of post-consumer tires considered burdensome waste, e.g., due to the substantial emissions of volatile organic compounds (VOCs). Therefore, it is essential...
-
Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber
PublikacjaIn this work, brewers’ spent grain (BSG) and ground tire rubber (GTR) waste fillers were applied as low-cost reinforcement phase in rigid polyurethane foam (PUR). PUR/BSG/GTR composites were prepared by a single step method, using polyglycerol as partial substitute of commercially available petrochemical polyols. Foaming parameters, chemical structure, dynamic mechanical properties, thermal stability, physico-mechanical properties...
-
Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends
PublikacjaA novel and cost-effective approach towards the modification of epoxy matrix has been developed using recycled polyurethane for the first time without sacrificing any of the intrinsic properties of the resin. Polyurethane, recycled from waste foam by glycolysis process (RPU), was found to be very effective in improving the properties of the thermosetting resin based on Diglycidyl ether of bisphenol-A (DGEBA). The effect of the...
-
Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods
PublikacjaThermoplastic starch (TPS) is a homogenous material prepared from native starch and water or other plasticizers subjected to mixing at a temperature exceeding starch gelatinization temperature. It shows major drawbacks like high moisture sensitivity, poor mechanical properties, and thermal stability. To overcome these drawbacks without significant cost increase, TPS could be blended with bio-based or biodegradable polymers and...
-
Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles
Publikacja: Due to rapid economic growth, the use of plastics in almost all areas of human life has significantly increased over recent decades, leading to massive pollution. Therefore, works dealing with sustainable and biodegradable polymer materials are vital now. Herein, sustainable MaterBi/poly(ε-caprolactone) (PCL)-based biocomposites, filled with diisocyanate-modified cellulose particles, were prepared and subjected to 12-week seawater...
-
The impact of filler thermomechanical modifications on static and dynamic mechanical performance of flexible foamed polyurethane/ground tire rubber/zinc borate composites
PublikacjaThe rapid development of the automotive industry is very beneficial to many aspects of human life, but it is also a very significant environmental burden. The most straightforward impact is related to the generation of exhaust, but the management of post-consumer car parts is also a major challenge. Among them, waste tires are very burdensome due to their enormous numbers. Therefore, it is essential to develop novel, environmentally...
-
Insights into Stoichiometry Adjustments Governing the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublikacjaPolyurethanes (PU) are widely applied in the industry due to their tunable performance adjusted by changes in the isocyanate index—stoichiometric balance between isocyanate and hydroxyl groups. This balance is affected by the incorporation of modifiers of fillers into the PU matrix and is especially crucial for PU foams due to the additional role of isocyanates—foaming of the material. Despite the awareness of the issue underlined...
-
Insights into modification of lignocellulosic fillers with isophorone diisocyanate: structure, thermal stability and volatile organic compounds emission assessment
PublikacjaThis study presents an analysis of the structure and properties of different types of lignocellulosic fillers modified by isophorone diisocyanate (IPDI) to provide insights into the possibility of their application to the manufacturing of wood polymer composites (WPCs). Moreover, it deals with the environmental aspects of modified fillers, by assessment of volatile organic compounds (VOCs) emitted during modification, as well as...