Wyniki wyszukiwania dla: SEISMIC PERFORMANCE
-
Seismic performance assessment of steel structures considering soil effects
PublikacjaNowadays, extreme need for construction of buildings in rural area increased the floor number of buildings, in which, the soil under foundation can affect the performance of buildings. In this research, soil effects were investigated to show soil type effects on the performance levels of steel structures. To do this, the 2-, 4-, 6-, and 8-story structures were modeled using ETABS software; then, the models were verified in Opensees...
-
Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs
PublikacjaAn insufficient separation distance between adjacent buildings is the main reason for structural pounding during severe earthquakes. The lateral load resistance system, fundamental natural period, mass, and stiffness are important factors having the influence on collisions between two adjacent structures. In this study, 3-, 5- and 9-story adjacent reinforced concrete and steel Moment Resisting Frames (MRFs) were considered to investigate...
-
Effect of Base-Connection Strength and Ductility on the Seismic Performance of Steel Moment-Resisting Frames
PublikacjaColumn-base connections in steel moment-resisting frames (SMFs) in seismic regions are commonly designed to develop the capacity of adjoining column with an intent to develop a plastic hinge in the column member, rather than in the connection (i.e., a strong-base design). Recent research has shown base connections to possess high ductility, indicating that this practice may be not only expensive but also unnecessary. This suggests...
-
Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials
PublikacjaThe permanent deformation of the building after seismic excitations can be determined by the Maximum Residual Interstory Drift Ratio (MR-IDR), which may be used for measuring the damage states. Low-post yield stiffness of the steel buckling-restrained braced frame (BRBF) makes this system vulnerable to large MR-IDR after a severe earthquake event. To overcome this issue, this paper investigates the seismic limit state performances...
-
Enhancing seismic performance of buckling-restrained brace frames equipped with innovative bracing systems
PublikacjaNowadays, to improve the performance of conventional bracing systems, in which, buckling in the pressure loads is the main disadvantage, the buckling-restrained brace (BRB) is introduced as a solution. In this study, the performance of the BRB system was improved with innovative lateral-resisting systems of double-stage yield buckling-restrained brace (DYB), and a combination of DYB improved with shape memory alloy (SMA) materials...
-
Enhancing seismic performance of rigid and semi-rigid connections equipped with SMA bolts incorporating nonlinear soil-structure interaction
PublikacjaNowadays, using smart connections can improve the performance of buildings with some recentering features that are from the superelastic behavior of Shape Memory Alloys (SMAs). It seems that there is different rigidity between the designed connection and the real one in Steel Moment-Resisting Frames (SMRFs), which can be considered as a problematic issue due to the importance of connections in seismic performance assessment. This...
-
Enhancing Seismic Performance of Semi-rigid Connection Using Shape Memory Alloy Bolts Considering Nonlinear Soil–Structure Interaction
PublikacjaSteel Moment-Resisting Frames (SMRFs) have their lateral resistance for their rigid connections, while real conditions have shown that the rigidity of a connection depends on the bolts and the end-plate thickness, which may not provide the assumed rigidity in design process. In this research, the main goal is to enhance the semi-rigid connections using shape memory alloy (SMA) bolts and explore their effects on the seismic limit-state...
-
Enhancing seismic performance of steel buildings having semi-rigid connection with infill masonry walls considering soil type effects
PublikacjaUnpreventable constructional defects are the main issues in the case of steel Moment-Resisting Frames (MRFs) that mostly occur in the rigidities of beam-to-column connections. The present article aims to investigate the effects of different rigidities of structures and to propose Infill Masonry Walls (IMWs) as retrofitting strategy for the steel damaged buildings. A fault or failure to meet a certain consideration of the soil type...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Grant Monbusho Rządu Japońskiego Grant Monbusho Rządu Japońskiego, Application of shape memory alloy to improve the seismic performance of bridges
ProjektyProjekt realizowany w Uniwersytet Tokijski zgodnie z porozumieniem . z dnia 1997-05-01
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Reducing the seismic failure potential of reinforced concrete frames
PublikacjaNowadays, there is an extreme need for buildings with seismic resistance capability in rural areas, in which, it is possible to increase the floor number of buildings. In this study, the effects of number of bays and story levels on the seismic performance level of Reinforced Concrete (RC) frames were investigated. The 3-, 5-, 7-, and 9-story RC frames were modeled using ETABS software. In order to collapse state analysis, Incremental...
-
Farzin Kazemi
OsobyHis main research areas are seismic performance assessment of structures and seismic hazard analysis in earthquake engineering. He performed a comprehensive study on the effect of pounding phenomenon and proposed modification factors to modify the seismic collapse capacity of structures or predict the seismic collapse capacity of structures which were retrofitted with linear and nonlinear Fluid Viscous Dampers (FVDs). His current...
-
Parametric analysis of Istanbul's Ring Road viaduct for three levels of seismic load
PublikacjaThe paper presents a parametric analysis of the Istanbul's ring road viaduct that is currently under construction within the Northern Marmara Highway project. The structure, due to its location on seismic prone areas is exposed to seismic loads of different strengths and different return periods. The study is focused on concrete bridge supports that are design to work in nonlinear range. The parametric study, conducted in MATLAB...
-
Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties
PublikacjaThe seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and...
-
Numerical study on seismic response of a base-isolated building modelled with shell elements
PublikacjaSeismic isolation is counted among the most popular and effective means of protecting structures against earthquake forces. Base isolators, like Lead-Rubber Bearings (LRB), High-Damping Rubber Bearings (HDB) or Friction Pendulum Systems (FPS) are extensively used in practice in many earthquake-prone regions of the world. The present paper reports the results obtained from the numerical study on seismic response of a base-isolated...
-
Seismic probabilistic assessment of steel and reinforced concrete structures including earthquake-induced pounding
PublikacjaRecent earthquakes demonstrate that prioritizing the retrofitting of buildings should be of the utmost importance for enhancing the seismic resilience and structural integrity of urban structures. To have a realistic results of the pounding effects in modeling process of retrofitting buildings, the present research provides seismic Probability Factors (PFs), which can be used for estimating collision effects without engaging in...
-
Introducing a Computational Method to Retrofit Damaged Buildings under Seismic Mainshock-Aftershock Sequence
PublikacjaRetrofitting damaged buildings is a challenge for engineers, since commercial software does not have the ability to consider the local damages and deformed shape of a building resulting from the mainshock record of an earthquake before applying the aftershock record. In this research, a computational method for retrofitting of damaged buildings under seismic mainshock-aftershock sequences is proposed, and proposed computational...
-
Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
PublikacjaEfficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublikacjaSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublikacjaSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Numerical Study on Seismic Response of a High-Rise RC Irregular Residential Building Considering Soil-Structure Interaction
PublikacjaThe objective of the present study is to investigate the importance of soilstructure interaction effects on the seismic response of a high-rise irregular reinforced-concrete residential building. In order to conduct this research, a detailed three-dimensional structure model was subjected to various earthquake excitations, also including a strong mining tremor. Soil-foundation flexibility was represented using the spring-based...
-
Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers
PublikacjaSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them by using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublikacjaRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Comparative analysis of seismic response reduction in multi-storey buildings equipped with base isolation and passive/active friction-tuned mass dampers
PublikacjaThis study presents an innovative approach to mitigating seismic responses in multi-storey buildings equipped with a base-isolation (BI) system and passive friction-tuned mass dampers (PFTMDs). The key innovation lies in the combined use of a BI system and a PFTMD system, as well as the activation of this mechanical system by controllers. Additionally, the research design optimizes the parameters of these devices specifically for...
-
Advanced Hysteretic Model of a Prototype Seismic Isolation System Made of Polymeric Bearings
PublikacjaThe present paper reports the results of acomprehensive study designed to verify the effectiveness of an advanced mathematical model in simulating the complex mechanical behaviour of a prototype seismic isolation system made of polymeric bearings (PBs). Firstly, in order to construct the seismic bearings considered in this research, a specially prepared flexible polymeric material with increased damping properties was employed....
-
Pounding mitigation of a short-span cable-stayed bridge using a new hybrid passive control system
PublikacjaThis paper investigates the effectiveness of a new hybrid passive control system on the seismic response of an existing steel cable-stayed bridge considering the pounding effect. The proposed hybrid passive control system comprises a seismic isolator and a metallic damper. The bridge is located in a high seismic zone and has suffered several damages including the earthquake-induced pounding damage during the 1988 earthquake....
-
Timber frame houses resistant to dynamic loads - seismic analysis
PublikacjaThe aim of the article is to present results of seismic analysis results of two real-sized timber frame buildings subjected to seismic excitations. The first model was insulated with mineral wool, the second one with polyurethane foam. Technology and specifications involved in both models construction is based on the previously conducted experimental research on timber frame houses, including wall panels tests, wall numerical models...
-
Seismic Pounding Between Bridge Segments: A State-of-the-Art Review
PublikacjaEarthquake-induced structural pounding in bridge structures has been observed in several previous seismic events. Collisions occur at the expansion joints provided between adjacent decks or between the deck and abutment. Pounding between the structural elements may lead to severe damages and even to the unseating of the bridge in certain cases. Several investigations have been performed to study pounding in bridges under uniform...
-
Timber Frame Houses with Different Insulation Materials - Seismic Analysis
PublikacjaThe aim of this article is to present results of a dynamic numerical analysis focused on the response of two timber frame building structures exposed to seismic excitations. The first structure was insulated with mineral wool, while the second one with polyurethane foam. Specifications and technology involved in the models' construction are based on the previously conducted experimental study, upon which numerical structural models...
-
Damage-Involved Structural Pounding in Bridges under Seismic Excitation
PublikacjaDuring severe earthquakes, pounding between adjacent superstructure segments of highway elevated bridges was often observed. It is usually caused by the seismic wave propagation effect and may lead to significant damage. The aim of the present paper is to show the results of the numerical analysis focused on damage-involved pounding between neighbouring decks of an elevated bridge under seismic excitation. The analysis was carried...
-
Optimal retrofit strategy using viscous dampers between adjacent RC and SMRFs prone to earthquake‑induced pounding
PublikacjaNowadays, retrofitting-damaged buildings is an important challenge for engineers. Finding the optimal placement of Viscous Dampers (VDs) between adjacent structures prone to earthquake-induced pounding can help designers to implement VDs with optimizing the cost of construction and achieving higher performance levels for both structures. In this research, the optimal placement of linear and nonlinear VDs between the 3-story, 5-story,...
-
The response of three colliding models of steel towers to seismic excitation
PublikacjaA number of past and recent observations have confirmed that collisions between adjacent, insufficiently-separated structures occurring as a result of seismic excitation (structural pounding) may result in serious damage to structural elements and can even lead to their total destruction. This paper summarises the results obtained from a shaking table experimental study which investigated structural pounding between three adjacent...
-
Predicting the seismic collapse capacity of adjacent structures prone to pounding
PublikacjaIn crowded cities, many structures are often constructed in a very close vicinity; therefore, during severe earthquakes, pounding phenomenon occurs due to out-of-phase vibrations of adjacent structures. In this study, pounding of adjacent structures is investigated up to the occurrence of total collapse. The novelty of this study is performing incremental dynamic analyses to compute the seismic collapse capacities of both pounding...
-
Pounding between Inelastic Three-Storey Buildings under Seismic Excitations
PublikacjaStructural interactions between adjacent, insufficiently separated buildings have been repeatedly observed during damaging ground motions. This phenomenon, known as the structural pounding, may result in substantial damage or even total collapse of structures. The aim of the present paper is to show the results of the nonlinear numerical analysis focused on pounding between inelastic three-storey buildings under seismic excitations....
-
Numerical Evaluation of Dynamic Response of a Steel Structure Model under Various Seismic Excitations
PublikacjaThe present paper reports the results of the study, which was designed to perform a numerical evaluation of dynamic response of a single-storey steel structure model. The experimental model was previously subjected to a number of different earthquake ground motions during an extensive shaking table investigation. The analyzed structure model was considered as a 1-DOF system with lumped parameters, which were determined by conducting...
-
Experimental Study on Effectiveness of a Prototype Seismic Isolation System Made of Polymeric Bearings
PublikacjaSeismic isolation is identified as one of the most popular and effective methods of protecting structures under strong dynamic excitations. Base isolators, such as Lead Rubber Bearings, High Damping Rubber Bearings, and Friction Pendulum Bearings, are widely used in practice in many earthquake-prone regions of the world to mitigate structural vibrations, and therefore minimize loss of life and property damage during seismic events....
-
Numerical Analysis of Seismic Pounding between Adjacent Buildings Accounting for SSI
PublikacjaThe structural pounding caused by an earthquake may damage structures and lead to their collapse. This study is focused on the pounding between two adjacent asymmetric structures with different dynamic properties resting on the surface of an elastic half-space. An exploration of the relationship between the effects of the seismic analysis with the impact response to the torsional pounding between adjacent buildings under different...
-
Examples of retrofit of structures on seismic areas by friction pendulum system.
PublikacjaZastosowanie łożysk wahadłowych, w których dyssypacja energii następuje na skutek tarcia, to jedna z najbardziej obiecujących metod wzmacniania odporności sejsmicznej budowli. Celem artykułu jest przedstawienie przykładów zastosowania tej metody do różnych typów konstrukcji budowlanych narażonych na wstrząsy sejsmiczne.
-
Predicting the seismic collapse capacity of adjacent structures prone to pounding
Publikacja -
Peak impact force for seismic retrofit of pounding-prone structures
PublikacjaCelem artykułu jest wykorzystanie dwuwymiarowych wykresów pokazujących wartość maksymalnej siły zderzenia (spektrów odpowiedzi) do wzmacniania odporności sejsmicznej budowli narażonych na zderzanie się podczas trzęsień ziemi. Wyniki analizy wskazują, iż wykresy takie mogą być bardzo przydatnym narzędziem przy podejmowaniu decyzji dotyczącej wyboru metody wzmacniania.
-
Parametric analysis of Istanbul's Ring Road viaduct for three levels of seismic load
PublikacjaThe paper presents a numerical analysis of the Istanbul's ring road viaduct that is currently under construction within the Northern Marmara Highway project. The structure, due to its location on seismic prone areas is exposed to seismic loads of different magnitude and different return periods. The study is fo-cused on concrete bridge supports that are design to work in nonlinear range. The study, conducted in SOFISTIK environment,...
-
Analysis of the effect of the seismic gap on the response of buildings experiencing pounding during earthquakes
PublikacjaThe aim of this paper is to investigate the effect of the seismic gap on the dynamic response of buildings experiencing earthquake-induced pounding. Three buildings have been analysed, which are 5-storey, 7-storey and 9-storey structures. Three possible pounding scenarios have been considered, which are pounding between 5-storey and 7-storey buildings, pounding between 5-storey and 9-storey buildings and pounding between 7-storey...
-
Shaking table experimental study on the effectiveness of polymer bearings for seismic isolation of structures
PublikacjaSeismic isolation has been recognised to be a very effective way of protecting structures from damage during earthquakes. It allows us to extend the natural period of the structure and therefore avoid resonance with the ground motion. Moreover, by increasing damping in the isolation devices, more energy can be dissipated and thus the structural response can be further reduced. The aim of this paper is to show the results of the...
-
Mathematical Modelling of a Seismic Isolation System to Protect Structures During Damaging Earthquakes
PublikacjaThe present study aims to determine the effectiveness of a nonlinear mathematical model in simulating complex mechanical behaviour of a seismic isolation system to protect structures during strong and damaging earthquakes. In order to construct the Polymeric Bearings considered in this research, a specially prepared flexible polyurethane elastomer with increased damping properties has been used. The usefulness of the proposed mathematical...
-
Effects of Column Base Flexibility on Seismic Response of Steel Moment-Frame Buildings
PublikacjaSteel Moment Resisting Frames (SMRFs) are very popular lateral load resisting systems in many seismically active regions. However, their seismic response is strongly dependent on the rotational fixity of column base connections. Despite many studies (both experimental and numerical) in this particular area, available approaches for estimating column base flexibility have been validated only against laboratory test data. In the...
-
Extended Newmark method to assess stability of slope under bidirectional seismic loading
PublikacjaThe paper concerns the dynamic behavior of a simple slope model subjected to simultaneous horizontal and vertical excitations. The proposed method is based on Newmark’s sliding block concept, however, four new features are introduced. The most important assumption is that the normal component of dynamic excitations affects the resisting force both before and after the initiation of the relative slope motion, making it time-dependent....
-
Application of discrete wavelet transform in seismic nonlinear analysis of soil–structure interaction problems
PublikacjaSimulation of soil-structure interaction (SSI) effects is a time-consuming and costly process. However, ignoring the influence of SSI on structural response may lead to inaccurate results, especially in the case of seismic nonlinear analysis. In this paper, wavelet transform methodology has been utilized for investigation of the seismic response of soil-structure systems. For this purpose, different storey outrigger braced buildings...
-
Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels
PublikacjaThe aim of the present paper is to study the influence of the infill panels on the seismic pounding response of adjacent structures in series. The contribution of the masonry infill has been simulated using equivalent diagonal compression struts. Steel frames have been assumed to have elastic-plastic behavior with 1% linear strain hardening. The dynamic contact analysis has been utilized where contact surface model (target and...