Filtry
wszystkich: 62
Wyniki wyszukiwania dla: ZINC COATING
-
Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc
PublikacjaThe influence of nanosized particles on electrochemical action of standard zinc-rich paints by means of SEM as well as potential and impedance measurements has been investigated. The motivation for doing this was to obtain additional electrical connection between the spherical microparticles themselves and zinc particles and steel substrate. Overall zinc content was at the level of 92% by weight. Samples with different concentration...
-
Performance of zinc-rich coatings evaluated using AFM-based electrical properties imaging
PublikacjaThe paper presents the results of investigation of polyvinyl zinc-rich coating exposed to 97% relativehumidity atmosphere for 40 days. Condition of the coating and evolution of its protective properties weredetermined with the novel AFM-based approach capable of providing surface profiles, local dc currentmaps as well as local impedance spectra. The proposed technique allowed insight into the local changesof coating topography...
-
Adhesion of organic coatings to hot-dip galvanized steel
PublikacjaDuplex systems provide long-time corrosion protection, much longer than the sum of the lifetimes of zinc and paint used individually. However loss of adhesion between coating and zinc substrate is often found in practice. Different methods of zinc surface preparations are used in the fi eld. The aim of this study was to examine and compare coating protection when the old zinc surface, stored during long-time period (15 years) in...
-
Modified Manganese Phosphate Conversion Coating on Low-Carbon Steel
PublikacjaConversion coatings are one of the primary types of galvanic coatings used to protect steel structures against corrosion. They are created through chemical reactions between the metal surface and the environment of the phosphating. This paper investigates the impact that the addition of new metal cations to the phosphating reaction environment has on the quality of the final coating. So far, standard phosphate coatings have contained...
-
Application of optical microsphere in fiber optic sensors for measurement of electrochemical processes
Dane Badawczeinvestigation of the electrochemical processes using micro-sphere fiber-optic sensor with a zinc oxide (ZnO) coating applied by Atomic Layer Deposition method (ALD). The measurements were performed in 1M KNO3 during a decomposition of Bisphenol-A
-
Preparation and Characterization of Microsphere ZnO ALD Coating Dedicated for the Fiber-Optic Refractive Index Sensor
PublikacjaWe report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C....
-
Underwater Electrochemical Offshore Tests of a Paint Coating Applied in Water on the Legs of an Oil Production Platform
PublikacjaThis paper presents the methodology developed for underwater measurements using electrochemical impedance spectroscopy (EIS) technique, aimed at determining the resistance of an epoxy coating applied in seawater to the legs of an oil production platform. Performing such underwater tests in an offshore environment was technically challenging. The results of measurements obtained on the platform were confronted with comparative results...
-
Problemy z powłokami antykorozyjnymi na elementach wyposażenia obiektów mostowych
PublikacjaPrzedstawiono problem wadliwości zabezpieczenia antykorozyjnego w zakresie malarskich powłok ochronno - dekoracyjnych wykonywanych na stalowych elementach barier zabezpieczonych uprzednio poprzez ocynkowanie metodą zanurzeniową. Wykorzystując przykłady pochodzące z różnych obiektów przedstawiono powtarzający się problem delaminacji powłok malarskich, niezależny od rodzaju zastosowanych wyrobów lakierniczych oraz znacznego rozwoju...
-
Problemy z powłokami antykorozyjnymi na elementach wyposażenia obiektów mostowych
PublikacjaOpisano problem wadliwości zabezpieczenia antykorozyjnego w zakresie malarskich powłok ochronno-dekoracyjnych wykonywanych na stalowych elementach barier zabezpieczonych uprzednio poprzez ocynkowanie metodą zanurzeniową na gorąco. Wykorzystując przykłady pochodzące z różnych obiektów przedstawiono powtarzający się problem delaminacji powłok malarskich, niezależny od rodzaju zastosowanych wyrobów lakierniczych oraz znacznego rozwoju...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 200 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 100 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 300 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
The Effect of Marginal Zn2+ Excess Released from Titanium Coating on Differentiation of Human Osteoblastic Cells
PublikacjaComposite coatings based on chitosan and zinc nanoparticles (ZnNPs) were successfully produced on Ti13Zr13Nb substrates by cathodic electrophoretic deposition (EPD). The unfavorable phenomenon of water electrolysis-induced nonuniformity was reduced by applying a low voltage (20 V) and a short deposition time (1 min). Surface analysis (roughness and hydrophilicity) reveals the potential of these coatings for enhancing cell attachment...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.5
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.4
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.3
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.1
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
ZnO ALD-Coated Microsphere-Based Sensors for Temperature Measurements
PublikacjaIn this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature measurements between 100 and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in real-time, which allows for higher accuracy during...
-
Microsphere structure application for supercapacitor in situ temperature monitoring
PublikacjaConstant, real-time temperature monitoring of the supercapacitors for efficient energy usage is in high demand and seems to be crucial for further development of those elements. A fiber-optic sensor can be an effective optoelectronic device dedicated for in-situ temperature monitoring of supercapacitors. In this work, the application of the fiber-optic microstrucutre with thin zinc oxide (ZnO) coating fabricated in the atomic layer...
-
Zabezpieczenia antykorozyjne stalowych barierek ochronnych na obiektach mostowych w ujęciu kosztów cyklu ich życia
PublikacjaThe article presents the Life Cycle Costs analysis of steel safety barriers operated in road lane conditions, located on a selected bridge structure. Three corrosion protection systems were proposed, analyzing them in terms of the cost of initial and planned outlays related to maintenance. Based on the LCC analysis for three options, taking into account the 25-year lifetime of the barriers, the optimal solutionwas indicated, i.e....
-
Nanolayers in Fiber-Optic Biosensing
PublikacjaIn this chapter, fiber-optic sensors based on nanolayers or thin films and their ability to perform biophotonic measurements is presented. In the last decade, fiber-optic sensors have gained popularity as biosensing devices. This has been made possible because of the design and the integration of new materials in fiber-optic technology. Nanolayers and thin films made from various materials such as nanodiamond (NCD), boron-doped...
-
Diamond protection for reusable ZnO coated fiber-optic measurement head in optoelectrochemical investigation of bisphenol A
PublikacjaDue to the global problem with plastic contaminating the environment, with bisphenol A (BPA) being one of the highest demand, effective monitoring and purification of the pollutants are required. The electrochemical methods constitute a good solution but, due to polymerization of electrochemical oxidation bisphenol A products and their adsorption to the surfaces, measurement head elements are clogged by the formed film. In this...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublikacjaFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Fiber-optic sensors based on microspheres with nanocoatings (Zastosowanie mikrosfer optycznych z cienkowarstwowymi pokryciami w czujnikach światłowodowych)
PublikacjaTemperature is one of the most important physical quantities. Temperature measurements are used in every field of life, especially electronics, electrical engineering, energy-related fields, including energy source and storage devices. The goal of this dissertation is to design and optimize the microsphere-based fiber-optic sensors construction for measurement of the sensor surrounding medium temperature, including selection of...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 75 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 65 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 90 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 80 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...