Filters
total: 1863
filtered: 120
Search results for: FINAL PREDICTION ERROR
-
Video of LEGO bricks on conveyor belt - Bricks with studs on the side
Open Research DataThe set contains videos of LEGO bricks (bricks with studs on the side) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over...
-
Video of LEGO bricks on conveyor belt - Plates with studs on the side
Open Research DataThe set contains videos of LEGO bricks (plates with studs on the side) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over...
-
Video of LEGO bricks on conveyor belt - gears
Open Research DataThe set contains videos of LEGO bricks (gears) moving on a white conveyor belt. The videos were taken for gathering images for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the...
-
Video of LEGO bricks on conveyor belt - Technic Brics
Open Research DataThe set contains videos of LEGO bricks (Technic bricks) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final conveyor...
-
Video of LEGO bricks on conveyor belt - Technic axles
Open Research DataThe set contains videos of LEGO bricks (Technic axles) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final conveyor...
-
Video of LEGO bricks on conveyor belt - Special Brics
Open Research DataThe set contains videos of LEGO bricks (special bricks, with additional connectors etc.) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - Wide Brics
Open Research DataThe set contains videos of LEGO bricks (wide bricks, with each side having more than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - minifigures, animals, plants and accessories
Open Research DataThe set contains videos of LEGO bricks (minifigures, animals, plants and accessories) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera...
-
Video of LEGO bricks on conveyor belt - Narrow Brics
Open Research DataThe set contains videos of LEGO bricks (narrow bricks, with on side no wider than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - wheels, tires and caterpillars
Open Research DataThe set contains videos of LEGO bricks (wheels, tires and caterpillars) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located...
-
The impact of QDgreen, QDgreen−β−CD−FA, β−CD, C−2028, β−CD(C−2028), QDgreen−C−2028, and QDgreen−β−CD(C−2028)−FA nanoconjugates on lysosomal content in the cancer (H460, Du-145, LNCaP) and normal (MRC-5, PNT1A) cells
Open Research DataThe impact of QDgreen, QDgreen−β−CD−FA, β−CD, C−2028, β−CD(C−2028), QDgreen−C−2028, and QDgreen−β−CD(C−2028)−FA nanoconjugates on lysosomal content in the cancer (H460, Du-145, LNCaP) and normal (MRC-5, PNT1A) cells was performed by Confocal Laser Scanning Microscopy (63× magnification; ZEISS LSM T-PMT, Magdeburg, Germany). To explore the influence...
-
Long-term hindcast simulation of sea ice in the Baltic Sea
Open Research DataThe data set contains the results of numerical modeling of sea ice over a period of 50 years (1958-2007) in the Baltic Sea. A long-term hindcast simulation was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). A numerical dynamic-thermodynamic model...
-
AVHRR Level1CD covering Baltic Sea area year 2006
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2010
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2007
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2011
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2012
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2008
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
AVHRR Level1CD covering Baltic Sea area year 2009
Open Research DataThe product level is the NOAA AVHRR Level 1C that is result of processing the AVHRR data from the HRPT stream based on ancillary information like sensing geometry and calibration data. Then converted into geophysical variables: top-of-the atmosphere (TOA) albedo or brightness temperature. Additionally, information like geolocation has been added. Other...
-
Destruction of AFM probes during normal operation
Open Research DataThe quality of the images obtained with the use of an atomic force microscope is determined by the state of the blade interacting with the tested material. Image artifacts can be generated by various reasons, such as oxidation, contamination or an error in blade fabrication, but also appear as a result of the repeated scanning process and inevitable...
-
Fire Weather Index data for Poland (March – September 2019) based on high-resolution Weather Research and Forecasting Model
Open Research DataThis dataset contains forecasted FWI indices calculated for the period: March 1 - September 30, 2019, based on the meteorological fields derived from the Weather Research and Forecasting Model (WRF) ver. 4.2.1. For each day FWI data with the forecast range equal 24 and 48 hour were stored in GeoTIFF files. In addition, soil moisture and temperature...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 60mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - Charpy impact test reslut in vary tempetatures
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - tensile test record
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
Hydrodynamic reanalysis of sea level in the Baltic Sea using the PM3D model
Open Research DataThe data set contains the results of numerical modelling of sea level fluctuations in the Baltic Sea in the Baltic Sea since 1998. A long-term reanalysis was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997).
-
Elgold intermediate: verified by the authors
Open Research DataThe dataset contains the texts from Elgold intermediate: verified by verification team additionaly verified by the dataset authors but before the final validation step with the elgold toolset.
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - 3D fracture scan
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in +20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in -20°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 60 mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50mm) - CMOD - force record, a0/W = 0.6
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.5
Open Research DataThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
AVHRR Level1CD covering Baltic Sea area year 2001
Open Research DataThe dataset contains data derived from recordings of the AVHRR/3 radiometer operating on board the NOAA POES (Polar Orbiting Environmental Satellites) Series - 5th Generation Satellites covering the Baltic Sea area. The satellite data was recorded in the years 2000-2012 directly by the HRPT station installed at the University of Gdańsk. The registration...
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 194
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 194, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 192
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 192, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 191
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 191, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.
-
Sea surface temperature in the Baltic Sea derived from Landsat 8 satellite data - path 193
Open Research DataThe data set contains high resolution sea surface temperature (SST) maps estimated from Landsat 8 Level 1 Thermal Infrared Sensor (TIRS) data using NLSST algorithm. SST was calculated only for granules (185 x 180 km) from satellite path number 193, that covered at least 2000 km2 of the cloud-free area of the Baltic Sea.