Filters
total: 335
filtered: 286
Search results for: PERIODIC AND APERIODIC PERTURBATIONS
-
Hysteresis curves for some periodic and aperiodic perturbations in gases
PublicationEvolution of sound in a medium whose properties irreversibly vary in the course of wave propagation, is studied. For example, a gas that is a particular case of a Newtonian fluid is considered. Hysteresis curves, pictorial representations of irreversible attenuation of the sound energy, in the plane of thermodynamic states are plotted. The irreversible losses in internal energy are proportional to the total attenuation and depend...
-
Hysteresis curves for some periodic and aperiodic perturbations in magnetosonic flow
PublicationA thermodynamic relation between perturbations of pressure and mass density in the magnetohydrodynamic flow is theoretically studied. Planar magnetohydrodynamic perturbations with the wave vector, which forms a constant angle with the equilibrium magnetic field, are under study. The theory considers thermal conduction of a plasma and the deviation from adiabaticity of a flow due to some kind of heating–cooling function. It also...
-
Acoustic Streaming Induced by Periodic and Aperiodic Sound in a Bubbly Liquid
PublicationThe vortex ow which follows intense sound propagating in a bubbly liquid, is considered. The reasons for acoustic streaming are both nonlinearity and dispersion. That makes streaming especial as compared with that in a Newtonian uid. Conclusions concern the vortex ow induced in a half-space by initially harmonic or impulse Gaussian beam. The vortex ow recalls a turbulent ow with increasing in time number of small-scale vortices...
-
Periodic solutions of Lagrangian systems under small perturbations
PublicationIn this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
-
Periodic Solutions of Generalized Lagrangian Systems with Small Perturbations
PublicationIn this paper we study the generalized Lagrangian system with a small perturbation. We assume the main term in the system to have a maximum, but do not suppose any condition for perturbation term. Then we prove the existence of a periodic solution via Ekeland’s principle. Moreover, we prove a convergence theorem for periodic solutions of perturbed systems.
-
Vortex flow caused by periodic and aperiodic sound in a relaxing maxwell fluid
PublicationThis paper concerns the description of vortex flow generated by periodic and aperiodic sound in relaxing Maxwell fluid. The analysis is based on governing equation of vorticity mode, which is a result of decomposition of the hydrodynamic equations for fluid flow with relaxation and thermal conductivity into acoustical and non-acoustical parts. The equation governing vorticity mode uses only instantaneous, not averaged over sound...
-
Instantaneous Heating and Cooling Caused by Periodic or Aperiodic Sound of Any Characteristic Duration in a Gas with Vibrational Relaxation
PublicationThermodynamic relaxation of internal degrees of a molecule's freedom in a gas occurs with some characteristic time. This makes wave processes in a gas behave differently depending on the ratio of characteristic duration of perturbations and the relaxation time. In particular, generation of the secondary non-wave modes by intense sound in a nonlinear flow dependens on frequency. These kinds of interaction are considered in this...
-
On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity
PublicationMagnetosonic periodic perturbations in a uniform and infinite plasma model are considered. Damping due to compressional viscosity, electrical resistivity, and thermal conduction are taken into account, as well as some heating–cooling function, which may destroy the isentropicity of wave perturbations. The wave vector forms arbitrary angle h with the equilibrium straight magnetic field, and all perturbations are functions...
-
Nonlinear Excitation of the Non-Wave Perturbations by the Magnetoacoustic Waves in the Non-Isentropic Plasma
PublicationNonlinear excitation of slow modes by the planar magnetosonic perturbations in a plasma is discussed. Plasma is an open system due to radiation and external heating. This may stipulate enhancement of wave perturbations and hence the acoustical activity of plasma. Plasma is assumed to be a homogeneous ideal gas with infinite electrical conductivity. The straight magnetic field is orthogonal to the velocity of fluid’s...
-
On the Nonlinear Effects of Magnetoacoustic Perturbations in Optically Thin Quasi-Isentropic Plasmas
PublicationNonlinear effects of planar magnetosound perturbations in a plasma are discussed. Plasma is non-adiabatic due to optically thin radiation and external heating. For these reasons, thermal instability of a plasma may appear which makes it acoustically active. The plasma is assumed to be initially homogeneous ideal gas with infinite electrical conductivity permeated by a straight magnetic field which is orthogonal to the trajectories...
-
On the Nonlinear Effects of Magnetoacoustic Perturbations in a Perfectly Conducting Viscous and Thermoconducting Gas
PublicationNonlinear effects of planar and quasi-planar magnetosound perturbations are discussed. The plasma is as- sumed to be a Newtonian thermoconducting gas with infinite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. Generation of the non-wave modes (magnetoacoustic heating and streaming) in the field of periodic and aperiodic magnetoacoustic perturbations is discussed. The results...
-
On the Nonlinea Distortions of Sound and its Coupling with Other Modes in a Gasesous Plasma with Finite Electric Conductivity in a Magnetic Field
PublicationNonlinear phenomena of the planar and quasi-planar magnetoacoustic waves are considered. We focus on deriving of equations which govern nonlinear excitation of the non-wave motions by the intense sound in initially static gaseous plasma. The plasma is treated as an ideal gas with finite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. This introduces dispersion of a flow. Magnetoacoustic...
-
Excitation of Non-Wave Modes by Sound of Arbitrary Frequency in a Chemically Reacting Gas
PublicationThe nonlinear phenomena in the field of high intensity sound propagating in a gas with a chemical reaction, are considered. A chemical reaction of A → B type is followed by dispersion and attenuation of sound which may be atypical during irreversible thermodynamic processes under some conditions. The first and second order derivatives of heat produced in the chemical reaction evaluated at the equilibrium temperature, density and...
-
A convergence result for mountain pass periodic solutions of perturbed Hamiltonian systems
PublicationIn this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on...
-
Nonlinear Influence of Sound on the Vibrational Energy of Molecules in a Relaxing Gas
PublicationDynamics of a weakly nonlinear and weakly dispersive flow of a gas where molecular vibrational relaxation takes place is studied. Variations in the vibrational energy in the field of intense sound is considered. These variations are caused by a nonlinear transfer of the acoustic energy into energy of vibrational degrees of freedom in a relaxing gas. The final dynamic equation which describes this is instantaneous, it includes a...
-
Magnetoacoustic Heating of Plasma Caused by Periodic MagnetosoundPerturbations with Discontinuities in a Quasi-Isentropic Magnetic Gas
PublicationThe magnetoacoustic heating of plasma by harmonic or periodic saw-tooth perturbations at a trans-ducer is theoretically studied. The planar fast and slow magnetosound waves are considered. The wavevector may form an arbitrary angleθwith the equilibrium straight magnetic field. In view of variableθand plasma-β, the description of magnetosound perturbations and appropriate magnetosound heatingis fairly difficult. The scenario of...
-
Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems
PublicationIn this work we will consider a class of second order perturbed Hamiltonian systems with a superquadratic growth condition on a time periodic potential and a small aperiodic forcing term. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system...
-
Acoustic streaming caused by some types of aperiodic sound. Buildup of acoustic streaming
PublicationThe analysis of streaming caused by aperiodic sound of different types (switched on at transducer sound or sound determined by initial conditions) is undertaken. The analysis bases on analytical governing equation for streaming Eulerian velocity, which is a result of decomposition of the hydrodynamic equations into acoustic and non-acoustic parts. Its driving force (of acoustic nature) represents a sum of two terms; one is the...
-
Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas
PublicationTwo dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place. are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into...
-
Unusual streaming in chemically reacting gases
PublicationNonlinear stimulation of the vorticity mode caused by losses in the momentum of sound in the chemically reacting gas, is considered. The instantaneous dynamic equation which describes the nonlinear generation of the vorticity mode, is derived. It includes a quadratic nonlinear acoustic source. Both periodic and aperiodic sound may be considered as the origin of the vorticity flow. In the non-equilibrium regime of the chemical reaction,...
-
Modulated crystal structures - periodicity in more than three dimensions
PublicationThe initial definition of a crystal was that it is an object with flat faces. When diffraction studies were developed it turned out that crystal consists of a highly ordered particles and it is possible to isolate a small unique part of their structure - a unit cell - and the definition has been changed to rely on this fact. Nowadays by a crystal we mean any solid having an essentially discrete diffraction diagram. It is because...
-
Magnetoacoustic Heating in Nonisentropic Plasma Caused by Different Kinds of Heating-Cooling Function
PublicationThe nonlinear phenomena which associate with magnetoacoustic waves in a plasma are analytically studied. A plasma is an open system with external inflow of energy and radiation losses. A plasma’s flow may be isentropically stable or unstable. The nonlinear phenomena occur differently in dependence on stability or instability of a plasma’s flow. The nonlinear instantaneous equation which describes dynamics of nonwave entropy mode...
-
Interaction of Acoustic and Thermal Modes in the Gas with Nonequilibrium Chemical Reactions: Possibilities of Acoustic Cooling
PublicationNonlinear generation of thermal mode during propagation of dominative sound in a chemically reacting gas is considered. The dynamic equation of excess temperature associated with the thermal mode is derived. It is instantaneous and includes quadratic nonlinear acoustic source reflecting the nonlinear character of interaction between acoustic and non-acoustic types of gas motion. Both periodic and aperiodic sound may be considered...
-
Acoustic heating produced in resonators filled by a newtonian fluid
PublicationAcoustic heating in resonators is studied. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in the linear part of the final equation, but preserving terms belonging to the thermal mode responsible for heating. This equation is instantaneous and includes nonlinear acoustic terms that form a...
-
Propagation of initially sawtooth periodic and impulsive signals in a quasi-isentropic magnetic gas
PublicationThe characteristics of propagation of sawtooth periodic and impulsive signals at a transducer are analytically studied in this work. A plasma under consideration is motionless and uniform at equilibrium, and its perturbations are described by a system of ideal magnetohydrodynamic equations. Some generic heating/cooling function, which in turn depends on equilibrium thermodynamic parameters, may destroy adiabaticity of a flow and...
-
Standing Waves in a Rectangular Resonator Containing Acoustically Active Gases
PublicationThe distribution of perturbations of pressure and velocity in a rectangular resonator is considered. A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas acoustically active under some conditions. We conclude that the incident and reflected compounds of a sound beam do not interact in the...
-
Efficiency of acoustic heating in the Maxwell fluid
PublicationThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Efficiency of acoustic heating in the Maxwell fluid
PublicationThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
generation of the vorticity mode by sound in a bingham plastic
PublicationThis study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode,in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describinginteraction between different modes are derived. The attention is paid to the nonlinear effects in the fieldof intense sound. The resulting equations which describe dynamics of both sound and the vorticity modeapply to both periodic...
-
Interaction of Acoustic and Thermal Modes in the Vibrationally Relaxing Gases. Acoustic Cooling
PublicationThe dynamic equation which governs an excess temperature associated with the thermal mode in vibrationally relaxing gas is derived. The nonlinear transfer of acoustic energy to the energy of the thermal mode in a relaxing gas causes slow variation of temperature with time. The nal dynamic equation is instantaneous. All types of sound, including aperiodic, may be considered as an acoustic source of corresponding heating or cooling....
-
Stability by linear approximation for time scale dynamical systems
PublicationWe study systems on time scales that are generalizations of classical differential or difference equations and appear in numerical methods. In this paper we consider linear systems and their small nonlinear perturbations. In terms of time scales and of eigenvalues of matrices we formulate conditions, sufficient for stability by linear approximation. For non-periodic time scales we use techniques of central upper Lyapunov exponents...
-
Average Redundancy of the Shannon Code for Markov Sources
PublicationIt is known that for memoryless sources, the average and maximal redundancy of fixed–to–variable length codes, such as the Shannon and Huffman codes, exhibit two modes of behavior for long blocks. It either converges to a limit or it has an oscillatory pattern, depending on the irrationality or rationality, respectively, of certain parameters that depend on the source. In this paper, we extend these findings, concerning the Shannon...
-
Ruch wirowy wywoływany przez ultradźwięk w płynach z relaksacją
PublicationRozprawa doktorska poświęcona jest badaniu ruchu wirowego wywoływanego przez ultradźwięk w różnych modelach płynów z relaksacją. Ma ona charakter teoretyczny, jednak wykorzystanie uzyskanych dzięki niej wyników może przynieść lepsze zrozumienie ruchu wirowego wywoływanego przez siłę akustyczną. W I rozdziale rozprawy przedstawione zostały ogólne rozważania dotyczące akustyki nieliniowej. Rozdział II dotyczy ruchu wirowego wywoływanego...
-
Highly Integrable Planar-structured Printed Circularly Polarized Antenna for Emerging Wideband Internet of Things Applications in the Millimeter-Wave Band
PublicationThis paper proposes a numerically and experimentally validated printed wideband antenna with a planar geometry for Internet of Things (IoT) applications. This design tackles the challenges associated with deploying IoT sensors in remote areas or across extensive geographical regions. The proposed design exploits a coplanar-waveguide-fed modified microstrip line monopole for excitation of circularly polarized waves radiating in...
-
Magnetosonic Excitation of the Entropy Perturbations in a Plasma with Thermal Conduction Depending on Temperature
PublicationNonlinear excitation of the entropy perturbations by magnetosonic waves in a uniform and infinite plasma model is considered. The wave vector of slow or fast mode forms an arbitrary angle (0 B B ) with the equilibrium straight magnetic field, and all perturbations are functions of the time and longitudinal coordinate. Thermal conduction is the only factor which destroys isentropicity of wave perturbations and causes the nonlinear...
-
Identification of continuous systems - Practical issues of insensitivity to perturbations
PublicationIn this paper the issue of continuous systems estimation, insensitive to certain perturbations, is discussed. Such an approach has rational advantages, especially when robust schemes are used to assist a target system responsible for industrial diagnostics. This requires that estimated model parameters are generated on-line, and their values are reliable and to a great extent accurate. Practical hints are suggested to challenge...
-
Identification of Continuous Systems - Practical Issues of Insensitivity to Perturbations
PublicationIn this paper the issue of continuous systems estimation, insensitive to certain perturbations, is discussed. Such an approach has rational advantages, especially when robust schemes are used to assist a target system responsible for industrial diagnostics. This requires that estimated model parameters are generated on-line, and their values are reliable and to a great extent accurate. Practical hints are suggested to challenge...
-
Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers
PublicationLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math....
-
Quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi^4 model
PublicationAnalytical form of quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi^4 model is obtained through zeta function regularisation with account of all rest variables of a d-dimensional theory. Qualitative dependence of quantum corrections on parameters of the classical systems is also evaluated for a much broader class of potentials u(x) = b^2 f(bx) + C with b and C as arbitrary real constants
-
Topological degree for equivariant gradient perturbations of an unbounded self-adjoint operator in Hilbert space
PublicationWe present a version of the equivariant gradient degree defined for equivariant gradient perturbations of an equivariant unbounded self-adjoint operator with purely discrete spectrum in Hilbert space. Two possible applications are discussed.
-
Dold sequences, periodic points, and dynamics
PublicationIn this survey we describe how the so-called Dold congruence arises in topology, and how it relates to periodic point counting in dynamical systems.
-
Integrate-and-fire models with an almost periodic input function
PublicationWe investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic...
-
Hysteresis curves and loops for harmonic and impulse perturbations in some non-equilibrium gases
PublicationEvolution of sound in a relaxing gas whose properties vary in the course of wave propagation, is studied. A relaxing medium may reveal normal acoustic properties or be acoustically active. In the first case, losses in acoustic energy lead to an increase in internal energy of a gas similarly as it happens in Newtonian fluids. In the second case, acoustic energy increases in the course of sound propagation, and the internal energy...
-
Firing map of an almost periodic input function
PublicationIn mathematical biology and the theory of electric networks the firing map of an integrate-and-fire system is a notion of importance. In order to prove useful properties of this map authors of previous papers assumed that the stimulus function f of the system ẋ = f(t,x) is continuous and usually periodic in the time variable. In this work we show that the required properties of the firing map for the simplified model ẋ = f(t) still...
-
A Strategy to Locate Fixed Points and Global Perturbations of ODE’s: Mixing Topology with Metric Conditions
PublicationIn this paper we discuss a topological treatment for the planar system z' = f (t, z) + g(t, z) where f and g are T -periodic in time and g(t, z) is bounded. Namely, we study the effect of g(t, z) in two different frameworks: isochronous centers and time periodic systems having subharmonics. The main tool employed in the proofs consists of a topological strategy to locate fixed points in the class of orientation preserving embedding...
-
Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
PublicationLet f be a smooth self-map of an m-dimensional (m >3) closed connected and simply-connected manifold such that the sequence of the Lefschetz num- bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to r. The resulting number is given by a topological invariant J[f] which is defned in combinatorial terms and is...
-
Modern Arrangement for Reduction of Voltage Perturbations
PublicationThe contents of this chapter encompass general problems and the most important issues of power-supply-quality improvement in AC systems. In the context of the above, consideration is given to evaluation of bilateral interactions of receivers with an electrical power-distribution system and methods of their reduction. Also are discussed the basis of operation of the most important compensation-filtration devices and their applications...
-
Lefschetz periodic point free self-maps of compact manifolds
PublicationLet f be a self-map of a compact connected manifold M. We characterize Lefschetz periodic point free continuous self-maps of M for several classes of manifolds and generalize the results of Guirao and Llibre [J.L.G. Guirao, J. Llibre, On the Lefschetz periodic point free continuous self-maps on connected compact manifolds,
-
Lefschetz periodic point free self-maps of compact manifolds
PublicationLet f be a self-map of a compact connected manifold M. We characterize Lefschetz periodic point free continuous self-maps of M for several classes of manifolds and generalize the results of Guirao and Llibre [J.L.G. Guirao, J. Llibre, On the Lefschetz periodic point free continuous self-maps on connected compact manifolds, Topology Appl. 158 (16) (2011) 2165-2169].
-
Finite Element Approaches to Model Electromechanical, Periodic Beams
PublicationPeriodic structures have some interesting properties, of which the most evident is the presence of band gaps in their frequency spectra. Nowadays, modern technology allows to design dedicated structures of specific features. From the literature arises that it is possible to construct active periodic structures of desired dynamic properties. It can be considered that this may extend the scope of application of such structures. Therefore,...