Filters
total: 8120
filtered: 7032
-
Catalog
- Publications 7032 available results
- Journals 294 available results
- Conferences 69 available results
- People 168 available results
- Projects 12 available results
- Research Equipment 1 available results
- e-Learning Courses 146 available results
- Events 8 available results
- Open Research Data 390 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: buckling-restrained braced frame machine-learning algorithm residual interstory drift seismic retrofit seismic performance curve seismic failure probability
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublicationNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Seismic performance evaluation of steel buckling-restrained braced frames including SMA materials
PublicationThe permanent deformation of the building after seismic excitations can be determined by the Maximum Residual Interstory Drift Ratio (MR-IDR), which may be used for measuring the damage states. Low-post yield stiffness of the steel buckling-restrained braced frame (BRBF) makes this system vulnerable to large MR-IDR after a severe earthquake event. To overcome this issue, this paper investigates the seismic limit state performances...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
PublicationEfficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced...
-
Enhancing seismic performance of buckling-restrained brace frames equipped with innovative bracing systems
PublicationNowadays, to improve the performance of conventional bracing systems, in which, buckling in the pressure loads is the main disadvantage, the buckling-restrained brace (BRB) is introduced as a solution. In this study, the performance of the BRB system was improved with innovative lateral-resisting systems of double-stage yield buckling-restrained brace (DYB), and a combination of DYB improved with shape memory alloy (SMA) materials...
-
Seismic Response Analysis of Knee-Braced Steel Frames Using Ni-Ti Shape Memory Alloys (SMAs)
PublicationShape Memory Alloys (SMAs) are known as active materials that can be widely used for structural purposes due to their flag-shape behavior under loading and reloading. Their unique characteristics provided a potential solution for civil engi-neers especially to model buildings with the capability of dissipating seismic en-ergy. In this study, the main purpose is to explore the seismic behavior of Knee-Braced Frames (KBFs) and...
-
Development and experimental validation of a novel double-stage yield steel slit damper-buckling restrained brace
PublicationThis research is focused on the development and experimental validation of a novel double-stage yield steel slit damper-buckling restrained brace (SSD-DYB) system designed for seismic resistance of steel structures. The SSD-DYB integrates the energy dissipation capability of a steel slit damper (SSD) in its initial segment, enhancing performance in the case of lower seismic intensities levels while employing a larger segment for...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublicationThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties
PublicationThe seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and...
-
Reducing the seismic failure potential of reinforced concrete frames
PublicationNowadays, there is an extreme need for buildings with seismic resistance capability in rural areas, in which, it is possible to increase the floor number of buildings. In this study, the effects of number of bays and story levels on the seismic performance level of Reinforced Concrete (RC) frames were investigated. The 3-, 5-, 7-, and 9-story RC frames were modeled using ETABS software. In order to collapse state analysis, Incremental...
-
Timber frame houses resistant to dynamic loads - seismic analysis
PublicationThe aim of the article is to present results of seismic analysis results of two real-sized timber frame buildings subjected to seismic excitations. The first model was insulated with mineral wool, the second one with polyurethane foam. Technology and specifications involved in both models construction is based on the previously conducted experimental research on timber frame houses, including wall panels tests, wall numerical models...
-
Timber Frame Houses with Different Insulation Materials - Seismic Analysis
PublicationThe aim of this article is to present results of a dynamic numerical analysis focused on the response of two timber frame building structures exposed to seismic excitations. The first structure was insulated with mineral wool, while the second one with polyurethane foam. Specifications and technology involved in the models' construction are based on the previously conducted experimental study, upon which numerical structural models...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Introducing a Computational Method to Retrofit Damaged Buildings under Seismic Mainshock-Aftershock Sequence
PublicationRetrofitting damaged buildings is a challenge for engineers, since commercial software does not have the ability to consider the local damages and deformed shape of a building resulting from the mainshock record of an earthquake before applying the aftershock record. In this research, a computational method for retrofitting of damaged buildings under seismic mainshock-aftershock sequences is proposed, and proposed computational...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Increasing the Seismic Resistance of Wood-frame Buildings by Applying PU Foam as Thermal Insulation
PublicationWood-frame buildings are very common in regions that are exposed to earthquakes. Most of residential buildings are constructed using this technology; therefore, the seismic resistance of them is really essential in order to prevent human losses and structural damage. The aim of the present article is to show the results of the detailed numerical FEM analysis focused on the seismic behaviour of the wood-frame house with different...
-
Seismic performance assessment of steel structures considering soil effects
PublicationNowadays, extreme need for construction of buildings in rural area increased the floor number of buildings, in which, the soil under foundation can affect the performance of buildings. In this research, soil effects were investigated to show soil type effects on the performance levels of steel structures. To do this, the 2-, 4-, 6-, and 8-story structures were modeled using ETABS software; then, the models were verified in Opensees...
-
Effect of Base-Connection Strength and Ductility on the Seismic Performance of Steel Moment-Resisting Frames
PublicationColumn-base connections in steel moment-resisting frames (SMFs) in seismic regions are commonly designed to develop the capacity of adjoining column with an intent to develop a plastic hinge in the column member, rather than in the connection (i.e., a strong-base design). Recent research has shown base connections to possess high ductility, indicating that this practice may be not only expensive but also unnecessary. This suggests...
-
Buckling of frame braced by linear elastic springs
PublicationIn the design codes and specifications, simplifed formulae or diagrams are given for determining the buckling lengths of frame columns based on the ruling criterion of considering frames as sway or non sway. Due to the fact that, the code formulae utilize onlylocal stifness distributions, these formulae may yield in certain cases rather erroneous results. In most code formulas a case of weakly braced frames is usually not considered.In...
-
Effects of Column Base Flexibility on Seismic Response of Steel Moment-Frame Buildings
PublicationSteel Moment Resisting Frames (SMRFs) are very popular lateral load resisting systems in many seismically active regions. However, their seismic response is strongly dependent on the rotational fixity of column base connections. Despite many studies (both experimental and numerical) in this particular area, available approaches for estimating column base flexibility have been validated only against laboratory test data. In the...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublicationSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition
PublicationSevere damages of adjacent structures due to structural pounding during earthquakes have emphasized the need to use some seismic retrofit strategy to enhance the structural performance. The purpose of this paper is to study the influence of using linear and nonlinear Fluid Viscous Dampers (FVDs) on the seismic collapse capacities of adjacent structures prone to pounding and proposing modification factors to modify the median...
-
Seismic probabilistic assessment of steel and reinforced concrete structures including earthquake-induced pounding
PublicationRecent earthquakes demonstrate that prioritizing the retrofitting of buildings should be of the utmost importance for enhancing the seismic resilience and structural integrity of urban structures. To have a realistic results of the pounding effects in modeling process of retrofitting buildings, the present research provides seismic Probability Factors (PFs), which can be used for estimating collision effects without engaging in...
-
Performance of Vector-valued Intensity Measures for Estimating Residual Drift of Steel MRFs with Viscous Dampers
PublicationViscous Dampers (VDs) are widely used as passive energy dissipation system for improving seismic performance levels especially in retrofitting of buildings. Residual Inter-story Drift Ratio (R-IDR) is another important factor that specifies the condition of building after earthquake. The values of R-IDR illustrates the possibility of retrofitting and repairing of a building. Therefore, this study aims to explore the vector-valued...
-
Influence of soil–structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels
PublicationThe present research aims to study the influence of the soil-structure interaction (SSI) and existence or absence of masonry infill panels in steel frame structures on the earthquake-induced pounding-involved response of adjacent buildings. The study was further extended to compare the pounding-involved behavior versus the independent behavior of structures without collisions, focusing much on dynamic behavior of single frames....
-
Enhancing seismic performance of rigid and semi-rigid connections equipped with SMA bolts incorporating nonlinear soil-structure interaction
PublicationNowadays, using smart connections can improve the performance of buildings with some recentering features that are from the superelastic behavior of Shape Memory Alloys (SMAs). It seems that there is different rigidity between the designed connection and the real one in Steel Moment-Resisting Frames (SMRFs), which can be considered as a problematic issue due to the importance of connections in seismic performance assessment. This...
-
Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs
PublicationAn insufficient separation distance between adjacent buildings is the main reason for structural pounding during severe earthquakes. The lateral load resistance system, fundamental natural period, mass, and stiffness are important factors having the influence on collisions between two adjacent structures. In this study, 3-, 5- and 9-story adjacent reinforced concrete and steel Moment Resisting Frames (MRFs) were considered to investigate...
-
Examples of retrofit of structures on seismic areas by friction pendulum system.
PublicationZastosowanie łożysk wahadłowych, w których dyssypacja energii następuje na skutek tarcia, to jedna z najbardziej obiecujących metod wzmacniania odporności sejsmicznej budowli. Celem artykułu jest przedstawienie przykładów zastosowania tej metody do różnych typów konstrukcji budowlanych narażonych na wstrząsy sejsmiczne.
-
Peak impact force for seismic retrofit of pounding-prone structures
PublicationCelem artykułu jest wykorzystanie dwuwymiarowych wykresów pokazujących wartość maksymalnej siły zderzenia (spektrów odpowiedzi) do wzmacniania odporności sejsmicznej budowli narażonych na zderzanie się podczas trzęsień ziemi. Wyniki analizy wskazują, iż wykresy takie mogą być bardzo przydatnym narzędziem przy podejmowaniu decyzji dotyczącej wyboru metody wzmacniania.
-
Parametric analysis of Istanbul's Ring Road viaduct for three levels of seismic load
PublicationThe paper presents a parametric analysis of the Istanbul's ring road viaduct that is currently under construction within the Northern Marmara Highway project. The structure, due to its location on seismic prone areas is exposed to seismic loads of different strengths and different return periods. The study is focused on concrete bridge supports that are design to work in nonlinear range. The parametric study, conducted in MATLAB...
-
Application of discrete wavelet transform in seismic nonlinear analysis of soil–structure interaction problems
PublicationSimulation of soil-structure interaction (SSI) effects is a time-consuming and costly process. However, ignoring the influence of SSI on structural response may lead to inaccurate results, especially in the case of seismic nonlinear analysis. In this paper, wavelet transform methodology has been utilized for investigation of the seismic response of soil-structure systems. For this purpose, different storey outrigger braced buildings...
-
Numerical study on seismic response of a base-isolated building modelled with shell elements
PublicationSeismic isolation is counted among the most popular and effective means of protecting structures against earthquake forces. Base isolators, like Lead-Rubber Bearings (LRB), High-Damping Rubber Bearings (HDB) or Friction Pendulum Systems (FPS) are extensively used in practice in many earthquake-prone regions of the world. The present paper reports the results obtained from the numerical study on seismic response of a base-isolated...
-
Seismic Pounding Between Bridge Segments: A State-of-the-Art Review
PublicationEarthquake-induced structural pounding in bridge structures has been observed in several previous seismic events. Collisions occur at the expansion joints provided between adjacent decks or between the deck and abutment. Pounding between the structural elements may lead to severe damages and even to the unseating of the bridge in certain cases. Several investigations have been performed to study pounding in bridges under uniform...
-
Experimental Study on Effectiveness of a Prototype Seismic Isolation System Made of Polymeric Bearings
PublicationSeismic isolation is identified as one of the most popular and effective methods of protecting structures under strong dynamic excitations. Base isolators, such as Lead Rubber Bearings, High Damping Rubber Bearings, and Friction Pendulum Bearings, are widely used in practice in many earthquake-prone regions of the world to mitigate structural vibrations, and therefore minimize loss of life and property damage during seismic events....
-
Shaking table experimental study on damage mechanism of the disconnecting switch under seismic excitation
PublicationThe efficiency of the energetic network is a very import safety issue in the region experienced by the earthquake. High voltage disconnecting switches are important elements of the energetic infrastructure used to separate electric circuits (i.e. during repairs), which should not be damaged remaining fully operational. The aim of the paper is to show the results of the shaking table experimental investigation focused on damage...
-
Advanced Hysteretic Model of a Prototype Seismic Isolation System Made of Polymeric Bearings
PublicationThe present paper reports the results of acomprehensive study designed to verify the effectiveness of an advanced mathematical model in simulating the complex mechanical behaviour of a prototype seismic isolation system made of polymeric bearings (PBs). Firstly, in order to construct the seismic bearings considered in this research, a specially prepared flexible polymeric material with increased damping properties was employed....
-
Advanced seismic control strategies for smart base isolation buildings utilizing active tendon and MR dampers
PublicationThis paper investigates the seismic behaviour of a five-storey shear building that incorporates a base isolation system. Initially, the study considers passive base isolation and employs a multi-objective archived-based whale optimization algorithm called MAWOA to optimize the parameters of base isolation. Subsequently, a novel model is proposed, which incorporates an interval type-2 Takagi-Sugeno fuzzy logic controller (IT2TSFLC)...
-
Damage-Involved Structural Pounding in Bridges under Seismic Excitation
PublicationDuring severe earthquakes, pounding between adjacent superstructure segments of highway elevated bridges was often observed. It is usually caused by the seismic wave propagation effect and may lead to significant damage. The aim of the present paper is to show the results of the numerical analysis focused on damage-involved pounding between neighbouring decks of an elevated bridge under seismic excitation. The analysis was carried...
-
Parametric analysis of Istanbul's Ring Road viaduct for three levels of seismic load
PublicationThe paper presents a numerical analysis of the Istanbul's ring road viaduct that is currently under construction within the Northern Marmara Highway project. The structure, due to its location on seismic prone areas is exposed to seismic loads of different magnitude and different return periods. The study is fo-cused on concrete bridge supports that are design to work in nonlinear range. The study, conducted in SOFISTIK environment,...
-
Analysis of the effect of the seismic gap on the response of buildings experiencing pounding during earthquakes
PublicationThe aim of this paper is to investigate the effect of the seismic gap on the dynamic response of buildings experiencing earthquake-induced pounding. Three buildings have been analysed, which are 5-storey, 7-storey and 9-storey structures. Three possible pounding scenarios have been considered, which are pounding between 5-storey and 7-storey buildings, pounding between 5-storey and 9-storey buildings and pounding between 7-storey...
-
Shaking table experimental study on the effectiveness of polymer bearings for seismic isolation of structures
PublicationSeismic isolation has been recognised to be a very effective way of protecting structures from damage during earthquakes. It allows us to extend the natural period of the structure and therefore avoid resonance with the ground motion. Moreover, by increasing damping in the isolation devices, more energy can be dissipated and thus the structural response can be further reduced. The aim of this paper is to show the results of the...
-
Enhancing Seismic Performance of Semi-rigid Connection Using Shape Memory Alloy Bolts Considering Nonlinear Soil–Structure Interaction
PublicationSteel Moment-Resisting Frames (SMRFs) have their lateral resistance for their rigid connections, while real conditions have shown that the rigidity of a connection depends on the bolts and the end-plate thickness, which may not provide the assumed rigidity in design process. In this research, the main goal is to enhance the semi-rigid connections using shape memory alloy (SMA) bolts and explore their effects on the seismic limit-state...
-
Pounding between Inelastic Three-Storey Buildings under Seismic Excitations
PublicationStructural interactions between adjacent, insufficiently separated buildings have been repeatedly observed during damaging ground motions. This phenomenon, known as the structural pounding, may result in substantial damage or even total collapse of structures. The aim of the present paper is to show the results of the nonlinear numerical analysis focused on pounding between inelastic three-storey buildings under seismic excitations....
-
The response of three colliding models of steel towers to seismic excitation
PublicationA number of past and recent observations have confirmed that collisions between adjacent, insufficiently-separated structures occurring as a result of seismic excitation (structural pounding) may result in serious damage to structural elements and can even lead to their total destruction. This paper summarises the results obtained from a shaking table experimental study which investigated structural pounding between three adjacent...
-
Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels
PublicationThe aim of the present paper is to study the influence of the infill panels on the seismic pounding response of adjacent structures in series. The contribution of the masonry infill has been simulated using equivalent diagonal compression struts. Steel frames have been assumed to have elastic-plastic behavior with 1% linear strain hardening. The dynamic contact analysis has been utilized where contact surface model (target and...
-
Mathematical Modelling of a Seismic Isolation System to Protect Structures During Damaging Earthquakes
PublicationThe present study aims to determine the effectiveness of a nonlinear mathematical model in simulating complex mechanical behaviour of a seismic isolation system to protect structures during strong and damaging earthquakes. In order to construct the Polymeric Bearings considered in this research, a specially prepared flexible polyurethane elastomer with increased damping properties has been used. The usefulness of the proposed mathematical...
-
Probabilistic seismic assessment of RC box-girder highway bridges with unequal-height piers subjected to earthquake-induced pounding
PublicationThis paper uses the probabilistic seismic assessment to study the effects of pounding and irregularity on the seismic behavior of typical concrete box-girder bridges with four levels of altitudinal irregularity. To extend the results for all bridges in the same class, uncertainty related to the earthquake, structural geometries, and materials are considered. Pounding is likely to take place in two cases: the first one concerns...
-
Experimental study on the behaviour of steel columns under seismic-induced axial impact load
PublicationIt has been observed during major earthquakes that the so called soft-storey failure of an upper floor of a structure results in large impact load acting on structural members of the lower storeys. It may further lead to progressive collapse of the whole structure substantially intensifying human and material losses. Therefore, the aim of this paper is to investigate experimentally the behaviour of columns under bending (observed...