Filters
total: 29
filtered: 27
-
Catalog
Chosen catalog filters
Search results for: SLM
-
Multiaxial Fatigue Behaviour of SLM 18Ni300 Steel
PublicationFatigue behaviour of SLM 18Ni300 steel under proportional bending-torsion loading is studied. The fatigue tests are conducted under pulsating loading conditions using tubular specimens with a transversal circular hole. Three ratios of the normal stress to shear stress are considered, namely σ/τ=4,σ/τ=2 and σ/τ = 4/3. Crack initiation sites were found for two diametrically opposite points around the hole, whose locations are governed...
-
Suitableness of SLM Manufactured Turbine Blade for Aerodynamical Tests
PublicationsettingsOrder Article Reprints Open AccessArticle Suitableness of SLM Manufactured Turbine Blade for Aerodynamical Tests by Janusz Telega 1,*ORCID,Piotr Kaczynski 1ORCID,Małgorzata A. Śmiałek 2ORCID,Piotr Pawlowski 3ORCID andRyszard Szwaba 1ORCID 1 Institute of Fluid Flow Machinery Polish Academy of Sciences (IMP PAN), Fiszera 14, 80-231 Gdansk, Poland 2 Faculty of Mechanical Engineering and Ship Technology, Institute of Naval...
-
Fatigue behaviour of SLM maraging steel under variable-amplitude loading
PublicationOne of the most challenging issues for additive manufactured materials is fatigue endurance. Engineering components often operate under complex, variable amplitude loadings, in which existing technological imperfections promote fatigue cracks growth and damage of elements eventually. In this study the effects of different variable-amplitude strain levels on fatigue life, 18Ni300 steel was tested. The work presents various behaviours...
-
Effect of bending-torsion on fracture and fatigue life for 18Ni300 steel specimens produced by SLM
PublicationIn this study, different fracture surfaces caused by fatigue failure were generated from 18Ni300 steel produced by selective laser melting (SLM). Hollow round bars with a transverse hole were tested under bending-torsion to investigate the crack initiation mechanisms and fatigue life. Next, the post-failure fracture surfaces were examined by optical profilometer and scanning electron microscope. The focus is placed on the relationship...
-
Modelowanie wybranych własności mechanicznych struktur po-rowatych przeznaczonych na trzony długoterminowych implan-tów ortopedycznych, otrzymywanych z wykorzystaniem metod micro-CT oraz SLM
PublicationArtykuł przedstawia metodologię opracowania geometrii materiału porowatego opartego na bazie stopu tytanu. W metodologii tej dąży się do uzyskania struktury porowatej jak najbardziej zbliżonej do struktury zdrowej tkanki kostnej, bazującej na rzeczywistych modelach geometrycznych uzyskanych ze zdjęć rentgenowskich z tomografii komputerowej. Rzeczywisty materiał po odpowiedniej obróbce modelu geometrycznego oraz przy zachowaniu...
-
Quasistatic and fatigue behavior of an AISI H13 steel obtained by additive manufacturing and conventional method
PublicationThis work aims to compare the mechanical behavior of an AISI H13 steel obtained by additive manufacturing with that obtained by conventional manufacturing methods. The average values of the ultimate tensile strength (UTS) and ductility obtained for the specimens produced by the conventional method were equal to 658 MPa and 18%, respectively, which compares with 503 MPa and 0.75% registered for the selective laser melting (SLM)...
-
Selective Laser Melting of Ti Alloy for Manufacturing The Prosthetic Elements
PublicationThe selective laser melting (SLM) is the additive manufacturing method of custom-designed parts. The used materials and the applications are various, including medicine. The titanium and its alloys are materials for which the dimensional quality, surface smoothness and no or extremely low porosity are difficult to reach. In this paper, the successful attempt to obtain by SLM the individually designed prosthetic bridges is described....
-
Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing
PublicationThe paper focuses on researching the effect of fatigue loading on metallic structure, lifetime, and fracture surface topographies in AISI H13 steel specimens obtained by selective laser melting (SLM). The topography of the fracture surfaces was measured over their entire area, according to the entire total area method, with an optical three-dimensional surface measurement system. The fatigue results of the SLM 3D printed steel...
-
Wytwarzanie i modyfikacja powierzchni porowatych struktur tytanowych przeznaczonych na implanty
PublicationCelem pracy było wytworzenie stopu Ti-13Nb-13Zr z wykorzystaniem technologii selektywnego topienia laserowego (SLM) oraz jego biofunkcjonalizacja za pomocą utleniania mikrołukowego (MAO), a następnie określenie wpływu parametrów procesowych na właściwości otrzymanych materiałów pod kątem ich zastosowania na implanty. Oceniono wpływ napięcia, natężenia i czasu procesu MAO przeprowadzanego w elektrolicie zawierającym wapń i fosfor...
-
3D Printing of Metallic Implants
PublicationThe fabrication of various elements, solid and open porous structures of stainless steel and Ti alloy is described. The process was started with the design of 3D models in CAD/CAM system. The 3D models were transformed into *.stl files and then the manufacturing process of the real structures by means of the selective laser melting with the SLM Realizer 100 3D printer was made. The paper shows the porous specimens made for possible...
-
Influence of Spatial Structures of 316L Stainless Steel on Its Cavitation Erosion Resistance
PublicationCavitation erosion performance of modified macroscopic internal structure 316L stainless steel was investigated. The samples processed by means of SLM method were subjected to cavitation erosion test. The scanning electron microscope Philips 30/ESEM was used to examine morphology of eroded surface.
-
THE USE OF THE Ti-13Zr-13Nb ALLOY POWDER FOR MANUFACTURING OF PROSTHETIC PARTS BY SELECTIVE LASER MELTING
PublicationThe 3D printing is a manufacturing technique belonging to the additive methods able to prepare the designed parts for various purposes. The present reasearch was aimed to fabricate the prosthetic foundations and bridges made of the new Ti-13Zr-13Nb alloy by the selective laser melting (SLM) of a metal powder. The scanning electron examinations and micro scanning tomography were used to investigate the surface quality and intrinsic...
-
ESTIMATION OF YOUNG`S MODULUS OF THE POROUS TITANIUM ALLOY WITH THE USE OF FEM PACKAGE
PublicationPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs...
-
Prosthetic Elements Made of the Ti-13Zr-13Nb Alloy by Selective Laser Melting
PublicationThe fabrication of the prosthetic foundations and bridges from the Ti-13Zr-13Nb alloy is described. The process was started from CAD/CAM design of 3D models of the foundations based on scanning of patient`s mouth. Next, 3D models were transformed into *.stl files for the manufacturing stage and then the manufacturing process by means of the selective laser melting with the SLM Realizer 100 equipment was made. The intrinsic structure...
-
Application of 3D printing metal powder technology in the manufacture of components with complex geometries
PublicationThe possibilities of using 3D printing powder technologies for making objects with complex geometries were presented. For this purpose, selected examples of elements with different geometries were used, which were built using metal powder methods – DMLS (direct metal laser sintering) / SLM (selective laser melting). Simultaneously, the indicated elements concern those areas of industry where 3D printing technology has been widely...
-
On the necessity of experimental verification of numerical results in biomedical applications
PublicationPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can be easily produced by stereolitography techniques, e.g. selective laser melting (SLM). Numerical techniques, like finite element method (FEM) have great potential in testing new, even the most sophisticated designs, according to their mechanical properties, i.e. strength or stiffness. However, due to different...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
A spatio-temporal approach to intersectoral labour and wage mobility
PublicationThe article presents the spatio-temporal approach for intersectoral labor and wage mobility. Analyses of interindustry mobility were performed with the use of general entropy mobility indices (GEMM). Spatio- temporal approach was obtained thanks to the separate measurement of spatial autocorrelation and regression for each set of sectoral wage and employment structure and was conducted in each year of the research period separately....
-
A Spatio-temporal Approach to Intersectoral Labour and Wage Mobility
PublicationThe article presents the spatio-temporal approach for intersectoral labor and wage mobility. Analyses of interindustry mobility were performed with the use of general entropy mobility indices (GEMM). Spatio-temporal approach was obtained thanks to the separate measurement of spatial autocorrelation and regression for each set of sectoral wage and employment structure and was conducted in each year of the research period separately....
-
The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers
PublicationSpacers, in terms of instruments used in revision surgery for the local treatment of postoperative infection, are usually made of metal rod covered by antibiotic-loaded bone cement. One of the main limitations of this temporary implant is the debonding effect of metal–bone cement interface, leading to aseptic loosening. Material selection, as well as surface treatment, should be evaluated in order to minimize the risk of fraction...
-
Nanotubular oxide layers and hydroxyapatite coatings on porous titanium alloy Ti13Nb13Zr
PublicationThe surface condition of an implant has a significant impact on response occurring at the implant-biosystem border. The knowledge of physical-chemical and biological processes allows for targeted modification of biomaterials to induce a specified response of a tissue. The present research was aimed at development of technology composing of obtaining the nanotube oxide layers on a porous titanium alloy Ti13Nb13Zr, followed by the...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
PublicationThis article introduces shape deformation as a new approach to the computer-aided design (CAD) of high-frequency components. We show that geometry deformation opens up new design possibilities and offers additional degrees of freedom in the 3-D modeling of microwave structures. Such design flexibility is highly desirable if the full potential of additive manufacturing (AM) is to be exploited in the fabrication of RF and microwave...
-
Low-Cost Method for Internal Surface Roughness Reduction of Additively Manufactured All-Metal Waveguide Components
PublicationIn this study, a novel low-cost polishing method for internal surface roughness reduction of additively manufactured components, developed for waveguide (WG) circuits operating in the millimeter frequency range is proposed. WG components fabricated using powder bed fusion (PBF) generally feature roughness of ten to fifty microns, which influences the increase of roughness-related conductor power losses having a major effect on...
-
Low-Loss 3D-Printed Waveguide Filters Based on Deformed Dual-Mode Cavity Resonators
PublicationThis paper introduces a new type of waveguide filter with smooth profile, based on specially designed dual-mode (DM) cavity resonators. The DM cavity design is achieved by applying a shape deformation scheme. The coupling between the two orthogonal cavity modes is implemented by breaking the symmetry of the structure, thus eliminating the need for additional coupling elements. The modes operating in the cavity are carefully analyzed...
-
Diverse roles, advantages and importance of deep eutectic solvents application in solid and liquid-phase microextraction techniques – A review
PublicationDeep eutectic solvents (DESs) are an emerging class of promising green solvents used as an alternative to traditional organic solvents in various scientific fields. The high biodegradability, biocompatibility, eco-friendliness, tunable properties, and presence of active groups in DESs make them the preferred solvent in a variety of solid- and liquid-phase microextraction techniques. Aside from these benefits, the use of DESs in...