Search results for: NONSTATIONARY PROCESSES
-
Regularized Local Basis Function Approach to Identification of Nonstationary Processes
PublicationThe problem of identification of nonstationary stochastic processes (systems or signals) is considered and a new class of identification algorithms, combining the basis functions approach with local estimation technique, is described. Unlike the classical basis function estimation schemes, the proposed regularized local basis function estimators are not used to obtain interval approximations of the parameter trajectory, but provide...
-
Identification of nonstationary processes using noncausal bidirectional lattice filtering
PublicationThe problem of off-line identification of a nonstationary autoregressive process with a time-varying order and a time-varying degree of nonstationarity is considered and solved using the parallel estimation approach. The proposed parallel estimation scheme is made up of several bidirectional (noncausal) exponentially weighted lattice algorithms with different estimation memory and order settings. It is shown that optimization of...
-
On Noncausal Identification of Nonstationary Multivariate Autoregressive Processes
PublicationThe problem of identification of nonstationary multivariate autoregressive processes using noncausal local estimation schemes is considered and a new approach to joint selection of the model order and the estimation bandwidth is proposed. The new selection rule, based on evaluation of pseudoprediction errors, is compared with the previously proposed one, based on the modified Akaike’s final prediction error criterion.
-
On joint order and bandwidth selection for identification of nonstationary autoregressive processes
PublicationWhen identifying a nonstationary autoregressive process, e.g. for the purpose of signal prediction or parametric spectrum estimation, two important decisions must be taken. First, one should choose the appropriate order of the autoregressive model, i.e., the number of autoregressive coefficients that will be estimated. Second, if identification is carried out using the local estimation technique, such as the localized version of...
-
Fast Basis Function Estimators for Identification of Nonstationary Stochastic Processes
PublicationThe problem of identification of a linear nonsta-tionary stochastic process is considered and solved using theapproach based on functional series approximation of time-varying parameter trajectories. The proposed fast basis func-tion estimators are computationally attractive and yield resultsthat are better than those provided by the local least squaresalgorithms. It is shown that two...
-
Study on the time-frequency analysis of nonstationary, electrochemical and corrosion processes
PublicationW pracy przedstawiono możliwości zastosowania czasowo-częstotliwościowych metod analizy sygnałów do badania niestacjonarnych procesów elektrochemicznych, chemicznych i korozyjnych. Wnikliwej analizie z wykorzystaniem metod STFT, rozkładu Wignera-Ville'a oraz przekształceń z klasy Cohena poddano rejestry oscylacji chemicznych, elektrochemicznych i rejestry korozji wżerowej.
-
Identification of nonstationary multivariate autoregressive processes– Comparison of competitive and collaborative strategies for joint selection of estimation bandwidth and model order
PublicationThe problem of identification of multivariate autoregressive processes (systems or signals) with unknown and possibly time-varying model order and time-varying rate of parameter variation is considered and solved using parallel estimation approach. Under this approach, several local estimation algorithms, with different order and bandwidth settings, are run simultaneously and compared based on their predictive performance. First,...
-
Local basis function method for identification of nonstationary systems
PublicationThis thesis is focused on the basis function method for the identification of nonstationary processes. The first chapter describes a group of models that can be identified using the basis function method. The next chapter describes the basic version of the basis function method, including its algebraic and statistical properties. The following section introduces the local basis function (LBF) method: its properties are described...
-
Quadratic Cohen representations in spectral analysis of serration process in Al–Mg alloys
PublicationImportant from mechanical point of view the Portevin–Le Chatelier serration phenomenon is being characterized by a complicated spectral profile. As a typical example of nonstationary processes it demands a special treatment allowing to follow the evolution of energy of stress fluctuations as a function of strain. The authors suggest the utilization of a compact system of quadratic transformations, known as Cohen class, as a technique...
-
Two-Stage Identification of Locally Stationary Autoregressive Processes and its Application to the Parametric Spectrum Estimation
PublicationThe problem of identification of a nonstationary autoregressive process with unknown, and possibly time-varying, rate of parameter changes, is considered and solved using the parallel estimation approach. The proposed two-stage estimation scheme, which combines the local estimation approach with the basis function one, offers both quantitative and qualitative improvements compared with the currently used single-stage methods.
-
On adaptive covariance and spectrum estimation of locally stationary multivariate processes
PublicationWhen estimating the correlation/spectral structure of a locally stationary process, one has to make two important decisions. First, one should choose the so-called estimation bandwidth, inversely proportional to the effective width of the local analysis window, in the way that complies with the degree of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive...
-
Mathematical and numerical modelling,W,IDE-EMSS,IIst,sem.01,lato,2023/24 (PG_00057379)
e-Learning CoursesModelling of controlled mechanical systems by the mixed method of rigid and flexible finite elements: The finite element volume problems. Dynamics of multibody systems. Modelling of stationary closed loop systems. Modelling of systems whose configuration changes with time. Modelling of nonlinear controlled systems. Optimal control at energy performance index: Control of continuous nonstationary systems in domain of generalised...
-
Mathematical and Numerical Modelling, L, IDE IInd, sem.01, summer, 2022/23(00057379)
e-Learning CoursesModelling of controlled mechanical systems by the mixed method of rigid and flexible finite elements: The finite element volume problems. Dynamics of multibody systems. Modelling of stationary closed loop systems. Modelling of systems whose configuration changes with time. Modelling of nonlinear controlled systems. Optimal control at energy performance index: Control of continuous nonstationary systems in domain of generalised...
-
Parallel frequency tracking with built-in performance evaluation
PublicationThe problem of estimation of instantaneous frequency of a nonstationary complex sinusoid (cisoid) buried in wideband noise is considered. The proposed approach employs a bank of adaptive notch filters, extended with a nontrivial performance assessment mechanism which automatically chooses the best performing filter in the bank. Additionally, a computationally attractive method of implementing the bank is proposed. The new structure...
-
Generalized Savitzky–Golay filters for identification of nonstationary systems
PublicationThe problem of identification of nonstationary systems using noncausal estimation schemes is consid-ered and a new class of identification algorithms, combining the basis functions approach with localestimationtechnique,isdescribed.Unliketheclassicalbasisfunctionestimationschemes,theproposedlocal basis function estimators are not used to obtain interval approximations of the parametertrajectory, but provide a sequence of point...
-
New results on estimation bandwidth adaptation
PublicationThe problem of identification of a nonstationary autoregressive signal using non-causal estimation schemes is considered. Noncausal estimators can be used in applications that are not time-critical, i.e., do not require real-time processing. A new adaptive estimation bandwidth selection rule based on evaluation of pseudoprediction errors is proposed, allowing one to adjust tracking characteristics of noncausal estimators to unknown...
-
A self-optimization mechanism for generalized adaptive notch smoother
PublicationTracking of nonstationary narrowband signals is often accomplished using algorithms called adaptive notch filters (ANFs). Generalized adaptive notch smoothers (GANSs) extend the concepts of adaptive notch filtering in two directions. Firstly, they are designed to estimate coefficients of nonstationary quasi-periodic systems, rather than signals. Secondly, they employ noncausal processing, which greatly improves their accuracy and...
-
Towards Robust Identification of Nonstationary Systems
PublicationThe article proposes a fast, two-stage method for the identification of nonstationary systems. The method uses iterative reweighting to robustify the identification process against the outliers in the measurement noise and against the numerical errors that may occur at the first stage of identification. We also propose an adaptive algorithm to optimize the values of the hyperparameters that are crucial for this new method.
-
New approach to noncausal identification of nonstationary stochastic systems subject to both smooth and abrupt parameter changes
PublicationIn this paper we consider the problem of finiteintervalparameter smoothing for a class of nonstationary linearstochastic systems subject to both smooth and abrupt parameterchanges. The proposed parallel estimation scheme combines theestimates yielded by several exponentially weighted basis functionalgorithms. The resulting smoother automatically adjustsits smoothing bandwidth to the type and rate of nonstationarityof the identified...
-
BUILT IN PERFORMANCE EVALUATION FOR AN ADAPTIVE NOTCH FILTER
PublicationThe problem of estimating instantaneous frequency of a non- stationary complexsinusoid (cisoid) buried in wideband no ise is considered. The proposed approach extends adaptive notc h filtering algorithm with a nontrivial performance assessme nt mechanism which can be used to optimize frequency tracking performance of the adaptive filter. Simulation results confi rm that the proposedextension allows one to improveaccuracyo f frequency...
-
Frequency based criterion for distinguishing tonal and noisy spectral components
PublicationA frequency-based criterion for distinguishing tonal and noisy spectral components is proposed. For considered spectral local maximum two instantaneous frequency estimates are determined and the difference between them is used in order to verify whether component is noisy or tonal. Since one of the estimators was invented specially for this application its properties are deeply examined. The proposed criterion is applied to the...
-
Cheap Cancellation of Strong Echoes for Digital Passive and Noise Radars
PublicationThe problem of cancellation of strong, potentially nonstationary,echoes in noise radars and passive radars utilizing digitaltransmissions is considered. The proposed solution is a multi-stage procedure.Initial clutter estimates, obtained using the least mean squares(LMS) algorithm, are refined using specially designed filters, "matched"to spectral densities of targets and clutter. When the postprocessing filtersare noncausal, the...
-
Multichannel self-optimizing active noise control scheme
PublicationThe problem of cancellation of a nonstationary sinusoidal interference, acting at the output of an unknown multivariable linear stable plant, is considered. The proposed cancellation scheme is a nontrivial extension of the SONIC (self-optimizing narrowband interference canceller) algorithm, developed earlier for single-input, single-output plants. In the important benchmark case - for disturbances with randomwalk-type amplitude...
-
On Bayesian Tracking and Prediction of Radar Cross Section
PublicationWe consider the problem of Bayesian tracking of radar cross section. The adopted observation model employs the gamma family, which covers all Swerling cases in a unified framework. State dynamics are modeled using a nonstationary autoregressive gamma process. The principal component of the proposed solution is a nontrivial gamma approximation, applied during the time update recursion. The superior performance of the proposed approach...
-
Multifrequency self-optimizing narrowband interference canceller
PublicationThe problem of cancellation of a nonstationary sinusoidal interference, acting at the output of a linear stable plant, is considered. It is assumed that disturbance is a multifrequency narrowband signal, and that system output is contaminated with wideband noise. It is not assumed that the reference signal is available. Two disturbance cancelling schemes are proposed, one for disturbances with unrelated frequency components, and...
-
New Approach to Noncasual Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes
PublicationIn this technical note, we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity...
-
ESTIMATION OF NONSTATIONARY HARMONIC SIGNALS AND ITS APPLICATION TO ACTIVE CONTROL OF MRI NOISE
PublicationA new adaptive comb filtering algorithm, capable of tracking the fundamental frequency and amplitudes of different frequency components of a nonstationary harmonic signal embedded in white measurement noise, is proposed. Frequency tracking characteristics of the new scheme are studied analytically, proving (under Gaussian assumptions and optimal tuning) its statistical efficiency for quasi-linear frequency changes. Laboratory tests...
-
On the preestimation technique and its application to identification of nonstationary systems
PublicationThe problem of noncausal identification of a nonstationary stochastic FIR (finite impulse response) sys- tem is reformulated, and solved, as a problem of smoothing of preestimated parameter trajectories. Three approaches to preestimation are critically analyzed and compared. It is shown that optimization of the smoothing operation can be performed adaptively using the parallel estimation technique. The new approach is computationally...
-
Application of dynamic impedance spectroscopy to scanning probe microscopy.
PublicationDynamic impedance spectroscopy, designed for measuring nonstationary systems, was used in combination with scanning probe microscopy. Using this approach, impedance mapping could be carried-out simultaneously with topography scanning. Therefore, correlation of electrical properties with particular phases of an examined sample was possible. The sample used in this study was spheroidal graphite cast iron with clearly defined phases...
-
Local basis function estimators for identification of nonstationary systems
PublicationThe problem of identification of a nonstationary stochastic system is considered and solved using local basis function approximation of system parameter trajectories. Unlike the classical basis function approach, which yields parameter estimates in the entire analysis interval, the proposed new identification procedure is operated in a sliding window mode and provides a sequence of point (rather than interval) estimates. It is...
-
On the instantaneous frequency smoothing for signals with quasi-linear frequency changes
PublicationThe problem of estimation of the slowly-varying instantaneous frequency of a nonstationary complex sinusoidal signal buried in noise is considered. This problem is usually solved using frequency tracking algorithms. It is shown that the accuracy of frequency estimates can be considerably increased if the results yielded by the frequency tracker are further processed using the appropriately designed filters. The resulting frequency...
-
Lattice filter based autoregressive spectrum estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running forward in...
-
On autoregressive spectrum estimation using the model averaging technique
PublicationThe problem of estimating spectral density of a nonstationary process satisfying local stationarity conditions is considered. The proposed solution is a two step procedure based on local autoregressive (AR) modeling. In the first step Bayesian-like averaging of AR models, differing in order, is performed. The main contribution of the paper is development of a new final-prediction-error-like statistic, which can be used to select...
-
On the lower smoothing bound in identification of time-varying systems
PublicationIn certain applications of nonstationary system identification the model-based decisions can be postponed, i.e. executed with a delay. This allows one to incorporate in the identification process not only the currently available information, but also a number of ''future'' data points. The resulting estimation schemes, which involve smoothing, are not causal. Assuming that the infinite observation history is available, the paper...
-
Lattice filter based multivariate autoregressive spectral estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a multivariate nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running...
-
On ''cheap smoothing'' opportunities in identification of time-varying systems
PublicationIn certain applications of nonstationary system identification the model-based decisions can be postponed, i.e. executed with a delay. This allows one to incorporate into the identification process not only the currently available information, but also a number of ''future'' data points. The resulting estimation schemes, which involve smoothing, are not causal. Despite the possible performance improvements, the existing smoothing...
-
Generalized adaptive comb filters/smoothers and their application to the identification of quasi-periodically varying systems and signals
PublicationThe problem of both causal and noncausal identification of linear stochastic systems with quasiharmonically varying parameters is considered. The quasi-harmonic description allows one to model nonsinusoidal quasi-periodic parameter changes. The proposed identification algorithms are called generalized adaptive comb filters/smoothers because in the special signal case they reduce down to adaptive comb algorithms used to enhance...
-
New Algorithms for Adaptive Notch Smoothing
PublicationThe problem of extraction/elimination of a nonstationary complex sinusoidal signal buried in noise is considered. This problem is usually solved using adaptive notch filtering (ANF)algorithms. It is shown that accuracy of signal estimation can be increased if the results obtained from ANF are further processed using a cascade of appropriately designed filters. The resulting adaptive notch smoothing (ANS) algorithms can be employed...
-
On noncausal weighted least squares identification of nonstationary stochastic systems
PublicationIn this paper, we consider the problem of noncausal identification of nonstationary, linear stochastic systems, i.e., identification based on prerecorded input/output data. We show how several competing weighted (windowed) least squares parameter smoothers, differing in memory settings, can be combined together to yield a better and more reliable smoothing algorithm. The resulting parallel estimation scheme automatically adjusts...
-
On noncausal identification of nonstationary stochastic systems
PublicationIn this paper we consider the problem of noncausal identification of nonstationary,linear stochastic systems, i.e., identification based on prerecorded input/output data. We show how several competing weighted least squares parameter smoothers, differing in memory settings, can be combined together to yield a better and more reliable smoothing algorithm. The resulting parallel estimation scheme automatically adjusts its smoothing...
-
New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications
PublicationThis paper deals with the problem of localization of impulsive disturbances in nonstationary multivariate signals. Both unidirectional and bidirectional (noncausal) detection schemes are proposed. It is shown that the strengthened pulse detection rule, which combines analysis of one-step-ahead signal prediction errors with critical evaluation of leave-one-out signal interpolation errors, allows one to noticeably improve detection results...
-
Estimation of time-frequency complex phase-based speech attributes using narrow band filter banks
PublicationIn this paper, we present nonlinear estimators of nonstationary and multicomponent signal attributes (parameters, properties) which are instantaneous frequency, spectral (or group) delay, and chirp-rate (also known as instantaneous frequency slope). We estimate all of these distributions in the time-frequency domain using both finite and infinite impulse response (FIR and IIR) narrow band filers for speech analysis. Then, we present...
-
Electrochemical Evaluation of Sustainable Corrosion Inhibitors via Dynamic Electrochemical Impedance Spectroscopy
PublicationFinding suitable measurement methods for the effective management of electrochemical problems is of paramount importance, particularly for improving efficiency in corrosion protection. The need for accurate measurement techniques specific to nonstationary conditions has long been recognized, and promising approaches have emerged. This chapter introduces dynamic electrochemical impedance spectroscopy as a novel advancement in electrochemistry...
-
Implementation of constant component filter in measurements of random telegraph signal noise
PublicationNoise is generated in all semiconductor devices. The intensity of these fluctuations depends on used elements, manufacturing process, operating conditions and device type. The result noise is a superposition of different kinds of fluctuations like thermal noise, generation-recombination noise, 1/f noise, shot noise and Random Telegraph Signal (RTS) noise. The last one, RTS noise is observed as nonstationary impulse fluctuations....
-
Akaike's final prediction error criterion revisited
PublicationWhen local identification of a nonstationary ARX system is carried out, two important decisions must be taken. First, one should decide upon the number of estimated parameters, i.e., on the model order. Second, one should choose the appropriate estimation bandwidth, related to the (effective) number of input-output data samples that will be used for identification/ tracking purposes. Failure to make the right decisions results...
-
Locally Adaptive Cooperative Kalman Smoothing and Its Application to Identification of Nonstationary Stochastic Systems
PublicationOne of the central problems of the stochastic approximation theory is the proper adjustment of the smoothing algorithm to the unknown, and possibly time-varying, rate and mode of variation of the estimated signals/parameters. In this paper we propose a novel locally adaptive parallel estimation scheme which can be used to solve the problem of fixed-interval Kalman smoothing in the presence of model uncertainty. The proposed solution...
-
Statistically efficient smoothing algorithm for time-varying frequency estimation
PublicationThe problem of extraction/elimination of a nonstationary sinusoidal signal from noisy measurements is considered. This problem is usually solved using adaptive notch filtering (ANF) algorithms. It is shown that the accuracy of frequency estimates can be significantly increased if the results obtained from ANF are backward-time filtered by an appropriately designed lowpass filter. The resulting adaptive notch smoothing (ANS) algorithm...
-
Kazimierz Darowicki prof. dr hab. inż.
PeopleStudia wyższe ukończyłem w czerwcu 1981 roku po zdaniu egzaminu dyplomowego i obronie pracy magisterskiej. Opiekunem pracy magisterskiej był dr hab. inż. Tadeusz Szauer. W roku 1991, 27 listopada uzyskałem stopień naukowy broniąc pracę doktorską zatytułowaną „Symulacyjna i korelacyjna analiza widm immitancyjnych inhibitowanej reakcji elektrodowej”. Promotorem pracy był prof. dr hab. inż. Józef Kubicki (Wydział Chemiczny...
-
From the multiple frequency tracker to the multiple frequency smoother
PublicationThe problem of extraction/elimination of nonstationary sinusoidalsignals from noisy measurements is considered. This problem is usually solved using adaptive notch filtering (ANF)algorithms. It is shown that the accuracy of frequency estimates can be significantly increased if the results obtained from ANF are backward-time filtered by an appropriately designed lowpass filter. The resulting adaptive notch smoothing (ANS)algorithm...
-
Optimal and suboptimal algorithms for identification of time-varying systems with randomly drifting parameters
PublicationNoncausal estimation algorithms, which involve smoothing, can be used for off-line identification of nonstationary systems. Since smoothingis based on both past and future data, it offers increased accuracy compared to causal (tracking) estimation schemes, incorporating past data only. It is shown that efficient smoothing variants of the popular exponentially weighted least squares and Kalman filter-based parameter trackers can...