Search results for: DEEP-LEARNING, NEURAL NETWORKS
-
System for automatic singing voice recognition
PublicationW artykule przedstawiono system automatycznego rozpoznawania jakości i typu głosu śpiewaczego. Przedstawiono bazę danych oraz zaimplementowane parametry. Algorytmem decyzyjnym jest algorytm sztucznych sieci neuronowych. Wytrenowany system decyzyjny osiąga skuteczność ok. 90% w obydwu kategoriach rozpoznawania. Dodatkowo wykazano przy pomocy metod statystycznych, że wyniki działania systemu automatycznej oceny jakości technicznej...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublicationNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
Combined Single Neuron Unit Activity and Local Field Potential Oscillations in a Human Visual Recognition Memory Task
PublicationGOAL: Activities of neuronal networks range from action potential firing of individual neurons, coordinated oscillations of local neuronal assemblies, and distributed neural populations. Here, we describe recordings using hybrid electrodes, containing both micro- and clinical macroelectrodes, to simultaneously sample both large-scale network oscillations and single neuron spiking activity in the medial temporal lobe structures...
-
Faults and Fault Detection Methods in Electric Drives
PublicationThe chapter presents a review of faults and fault detection methods in electric drives. Typical faults are presented that arises for the induction motor, which is valued in the industry for its robust construction and cost-effective production. Moreover, a summary is presented of detectable faults in conjunction with the required physical information that allow a detection of specific faults. In order to address faults of a complete...
-
Oprogramowanie Systemów Elektronicznych 2023/2024
e-Learning Courses{mlang pl} Cel kursu: Programowanie urządzeń pomiarowych, obsługa interfejsów komputerowych, poznanie mechanizmów zwiększania wydajności oprogramowania (Win32 API, DLL, ODBC), projektowanie aplikacji wielozadaniowych. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic...
-
Oprogramowanie Systemów Elektronicznych 2021/2022
e-Learning Courses{mlang pl} Cel kursu: Programowanie urządzeń pomiarowych, obsługa interfejsów komputerowych, poznanie mechanizmów zwiększania wydajności oprogramowania (Win32 API, DLL, ODBC), projektowanie aplikacji wielozadaniowych. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic...
-
Infosystemy Elektroniczne 2023/2024
e-Learning Courses{mlang pl} Cel kursu: Poznanie zasad funkcjonowania różnorodnych infosystemów elektronicznych, obejmujących zastosowania przemysłowe i komercyjne elektroniki. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic Systems" na kierunku Elektronika.Obieralny dla specjalności...
-
Infosystemy Elektroniczne 2021/2022
e-Learning Courses{mlang pl} Cel kursu: Poznanie zasad funkcjonowania różnorodnych infosystemów elektronicznych, obejmujących zastosowania przemysłowe i komercyjne elektroniki. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic Systems" na kierunku Elektronika.Obieralny dla specjalności...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Automatic recognition of males and females among web browser users based on behavioural patterns of peripherals usage
PublicationPurpose The purpose of this paper is to answer the question whether it is possible to recognise the gender of a web browser user on the basis of keystroke dynamics and mouse movements. Design/methodology/approach An experiment was organised in order to track mouse and keyboard usage using a special web browser plug-in. After collecting the data, a number of parameters describing the users’ keystrokes, mouse movements and clicks...
-
Reinforced Secure Gossiping Against DoS Attacks in Post-Disaster Scenarios
PublicationDuring and after a disaster, the perceived quality of communication networks often becomes remarkably degraded with an increased ratio of packet losses due to physical damages of the networking equipment, disturbance to the radio frequency signals, continuous reconfiguration of the routing tables, or sudden spikes of the network traffic, e.g., caused by the increased user activity in a post-disaster period. Several techniques have...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublicationThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Marine and Cosmic Inspirations for AI Algorithms
PublicationArtificial Intelligence (AI) is a scientific area that currently sees an enormous growth. Various new algorithms and methods are developed and many of them meets practical, successful applications. Authors of new algorithms draw different inspirations. Probably the most common one is the nature. For example, Artificial Neural Networks were inspired by the structure of human brain and nervous system while the classic Genetic Algorithm...
-
High-Performance Machine-Learning-Based Calibration of Low-Cost Nitrogen Dioxide Sensor Using Environmental Parameter Differentials and Global Data Scaling
PublicationAccurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide (NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, and food processing. Its...
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublicationIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Verification of the Parameterization Methods in the Context of Automatic Recognition of Sounds Related to Danger
PublicationW artykule opisano aplikację, która automatycznie wykrywa zdarzenia dźwiękowe takie jak: rozbita szyba, wystrzał, wybuch i krzyk. Opisany system składa się z bloku parametryzacji i klasyfikatora. W artykule dokonano porównania parametrów dedykowanych dla tego zastosowania oraz standardowych deskryptorów MPEG-7. Porównano też dwa klasyfikatory: Jeden oparty o Percetron (sieci neuronowe) i drugi oparty o Maszynę wektorów wspierających....
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublicationBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique
PublicationIn addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...