Filters
total: 9247
-
Catalog
- Publications 6876 available results
- Journals 479 available results
- Conferences 247 available results
- People 334 available results
- Inventions 1 available results
- Projects 23 available results
- Research Teams 1 available results
- Research Equipment 2 available results
- e-Learning Courses 254 available results
- Events 8 available results
- Open Research Data 1022 available results
displaying 1000 best results Help
Search results for: FRACTIONAL ORDER SYSTEMS
-
Greedy Multipoint Model-Order Reduction Technique for Fast Computation of Scattering Parameters of Electromagnetic Systems
PublicationThis paper attempts to develop a new automated multipoint model-order reduction (MOR) technique, based on matching moments of the system input–output function, which would be suited for fast and accurate computation of scattering parameters for electromagnetic (EM) systems over a wide frequency band. To this end, two questions are addressed. Firstly, the cost of the wideband reduced model generation is optimized by automating a...
-
Fixed final time and free final state optimal control problem for fractional dynamic systems – linear quadratic discrete-time case
Publication -
Variable Order Differential Models of Bone Remodelling * *This work was supported by FCT, through IDMEC, under LAETA, projects UID/EMS/50022/2013, BoneSys, joint Polish-Portuguese project Modelling and controlling cancer evolution using fractional calculus, PERSEIDS (PTDC/EMS-SIS/0642/2014) and IF/00653/2012
Publication -
Dataset of phase portraits of the fractional prey-predator model with Holling type-II interaction (without predator harvesting)
Open Research DataThe need for a fractional generalization of a given classical model is often due to new behaviors which cannot be taken into account by the model. In this situation, it can be useful to look for a fractional deformation of the initial system, trying to fit the fractional exponent of differentiation in order to catch properly the data.
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublicationIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Assessment of the devulcanization process of EPDM waste from roofing systems by combined thermomechanical/microwave procedures
PublicationEthylene-propylene-diene rubber (EPDM) is a elastomer widely used in common industrial applications. EPDM can be shaped into sheets and employed as isolating material for roofing systems. In this study, scraps of EPDM from commercial, industrial and residential roofing systems were treated by combined thermo-mechanical and microwave devulcanization processes including peroxide of benzoyl (BPO). The devulcanized EPDM (Dev-EPDM)...
-
A New Approach to Stability Evaluation of Digital Filters
PublicationIn this paper, a new numerical method of evaluating digital filter stability is presented. This approach is based on novel root-finding algorithms at the complex plane using the Delaunay triangulation and Cauchy's Argument Principle. The presented algorithm locates unstable zeros of the characteristic equation with their multiplicities. The proposed method is generic and can be applied to a vast range of systems. Verification of...
-
An facile Fortran-95 algorithm to simulate complex instabilities in three-dimensional hyperbolic systems
Open Research DataIt is well know that the simulation of fractional systems is a difficult task from all points of view. In particular, the computer implementation of numerical algorithms to simulate fractional systems of partial differential equations in three dimensions is a hard task which has no been solved satisfactorily. Here, we provide a Fortran-95 code to solve...
-
An 8–18 GHz ultrawideband gap waveguide folded bandpass filter for radar applications
PublicationThe present work introduces a compact ultrawideband filter based on folded ridge gap waveguide. The design and fabrication of a ninth-order bandpass filter demonstrates its capabilities, achieving a 75 % fractional bandwidth, a return loss (RL) of 17.6 dB, and an insertion loss (IL) of 0.52 dB within the 8.22 to 18.15 GHz frequency range. The fabricated prototype shows excellent agreement between simulations and measurements. The...
-
Hidden Tensor Structures
PublicationAny single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple as a single one-dimensional harmonic oscillator, an infinite potential well, or a classical finite-amplitude signal of finite duration...
-
A Fortran-95 algorithm to solve the three-dimensional Higgs boson equation in the de Sitter space-time
Open Research DataA numerically efficient finite-difference technique for the solution of a fractional extension of the Higgs boson equation in the de Sitter space-time is designed. The model under investigation is a multidimensional equation with Riesz fractional derivatives of orders in (0,1)U(1,2], which considers a generalized potential and a time-dependent diffusion...
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublicationIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative
PublicationIn this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality...
-
Numerical Test for Stability Evaluation of Analog Circuits
PublicationIn this contribution, a new numerical test for the stability evaluation of analog circuits is presented. Usually, if an analog circuit is unstable then the roots of its characteristic equation are localized on the right half-plane of the Laplace s- plane. Because this region is unbounded, we employ the bilinear transformation to map it into the unit disc on the complex plane. Hence, the existence of any root inside the unit disc...
-
Numerical Investigation of Nuclear Reactor Kinetic and Heat Transfer Fractional Model with Temperature Feedback
PublicationAbstract—In the paper, the numerical results concerning the kinetics and proposed heat exchange models in nuclear reactor based on fractional calculus are presented for typical inputs. Two fractional models are proposed and compared with the model based on ordinary derivative. The first fractional model is based on one of the generalized Cattaneo equations. The second one is based on replacing the ordinary to fractional order of...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Testing Stability of Digital Filters Using Multimodal Particle Swarm Optimization with Phase Analysis
PublicationIn this paper, a novel meta-heuristic method for evaluation of digital filter stability is presented. The proposed method is very general because it allows one to evaluate stability of systems whose characteristic equations are not based on polynomials. The method combines an efficient evolutionary algorithm represented by the particle swarm optimization and the phase analysis of a complex function in the characteristic equation....
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
Comments on various extensions of the Riemann–Liouville fractional derivatives : About the Leibniz and chain rule properties
PublicationStarting from the Riemann–Liouville derivative, many authors have built their own notion of fractional derivative in order to avoid some classical difficulties like a non zero derivative for a constant function or a rather complicated analogue of the Leibniz relation. Discussing in full generality the existence of such operator over continuous functions, we derive some obstruction Lemma which can be used to prove the triviality...
-
Modelling and simulations in time-fractional electrodynamics based on control engineering methods
PublicationIn this paper, control engineering methods are presented with regard to modelling and simulations of signal propagation in time-fractional (TF) electrodynamics. That is, signal propagation is simulated in electromagnetic media described by Maxwell’s equations with fractional-order constitutive relations in the time domain. We demonstrate that such equations in TF electrodynamics can be considered as a continuous-time system of...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
Fractional problems with advanced arguments
PublicationThis paper concerns boundary fractional differential problems with advanced arguments. We investigate the existence of initial value problems when the initial point is given at the end point of an interval. Nonhomogeneous linear fractional differential equations are also studied. The existence of solutions for fractional differential equations with advanced arguments and with boundary value problems has been investigated by using...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublicationIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator
PublicationA new approach is used to investigate the analytical solutions of the mathematical fractional Casson fluid model that is described by the Constant Proportional Caputo fractional operator having non-local and singular kernel near an infinitely vertical plate. The phenomenon has been expressed in terms of partial differential equations, and the governing equations were then transformed in non-dimensional form. For the sake of generalized...
-
Analiza sterowania ułamkowego PIλDμ mocą reaktora jądrowego
PublicationW artykule przedstawiono syntezę regulatora PIλDμ niecałkowitego rzędu dla potrzeb sterowania mocą reaktora jądrowego lekko wodnego określanego, jako typu PWR (Pressurized Water Reactor). W tym celu wykorzystano nieliniowy model matematyczny reaktora PWR o parametrach skupionych obejmujący procesy generacji i wymiany ciepła oraz termicznych efektów reaktywnościowych. Nastawy regulatora PIλDμ niecałkowitego rzędu dobrano w sposób...
-
Positive solutions to advanced fractional differential equations with nonlocal boundary conditions
PublicationWe study the existence of positive solutions for a class of higher order fractional differential equations with advanced arguments and boundary value problems involving Stieltjes integral conditions. The fixed point theorem due to Avery-Peterson is used to obtain sufficient conditions for the existence of multiple positive solutions. Certain of our results improve on recent work in the literature.
-
On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are reviewed and discussed with regard to element models applied in the circuit theory. The properties of FO derivatives required for the circuit-level modeling are formulated. Potential problems related to the generalization of transmission-line equations with the use of FO derivatives are presented. It is demonstrated that some formulations of FO derivatives have limited...
-
On Sample Rate Conversion Based on Variable Fractional Delay Filters
PublicationThe sample rate conversion algorithm based on variable fractional delay filters is often used if the resampling ratio cannot be expressed as the ratio of small integer numbers or if it is not constant. The main advantage of such solution is that it allows for arbitrary resampling ratios which can even be changed during the resampling process. In this paper a discussion on influence of different approaches to fractional filter...
-
On Applications of Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are discussed from the point of view of applications in the circuit theory. The properties of FO derivatives required for the circuit-level modelling are formulated. Potential problems related to the generalization of transmission line equations with the use of FO derivatives are presented. It is demonstrated that some of formulations of the FO derivatives have limited...
-
Boundary problems for fractional differential equations
PublicationIn this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublicationIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Joanna Janczewska prof. dr hab.
PeopleJoanna Janczewska obtained her PhD degree at the University of Gdansk in 2002. From October 1999 to September 2004 she was an assistant at the University of Gdansk. Since October 2004 she has been an assistant professor at the Gdansk University of Technology. Moreover, from October 2008 to September 2010 she had a visiting position in the Institute of Mathematics of the Polish Academy of Sciences. Her mathematical interests...
-
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...
-
Crank–Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations
PublicationIn this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grünwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes....
-
Identification and non-integer order modelling of synchronous machines operating as generator
PublicationThis paper presents an original mathematical model of a synchronous generator using derivatives of fractional order. In contrast to classical models composed of a large number of R-L ladders, it comprises half-order impedances, which enable the accurate description of the electromagnetic induction phenomena in a wide frequency range, while minimizing the order and number of model parameters. The proposed model takes into account...
-
Numerical solution of fractional neutron point kinetics in nuclear reactor
PublicationThis paper presents results concerning solutions of the fractional neutron point kinetics model for a nuclear reactor. Proposed model consists of a bilinear system of fractional and ordinary differential equations. Three methods to solve the model are presented and compared. The first one entails application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. Second involves building an analog scheme...
-
Functional delay fractional equations
PublicationIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublicationIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Sensitive Demonstration of the Twin-Core Couplers including Kerr Law Non-Linearity via Beta Derivative Evolution
PublicationTo obtain new solitary wave solutions for non-linear directional couplers using optical meta-materials, a new extended direct algebraic technique (EDAT) is used. This model investigates solitary wave propagation inside a fiber. As a result, twin couplers are the subject of this study. Kerr law is the sort of non-linearity addressed there. Because it offers solutions to problems with large tails or infinite fluctuations, the resulting...
-
Square root RC Nyquist filter of fractional delay
PublicationIn this paper we propose a discrete-time FIR (finite impulse response) filter which couples the role of square root Nyquist filter with fractional delay filter. This filter enables to substitute for a cascade of square root RC (SRRC) Nyquist filter and fractional delay filter in one device/algorithm. The aim is to compensate for transmission delay in communication system. Statistically defined performances, e.g. BER (bit error...
-
efficient fractional delay hilbert transform filter in the farrow structure
PublicationIn this paper the design and application of a Fractional Delay Hilbert Transform Filter (FDHTF) into an adaptive sub-sample delay estimation between two separated sinusoidal signals is considered. The FDHTF incorporates the functions of Hilbertian and variable fractional delay filtering of the incoming signal simultaneously, in one stage. In traditional approach each of these operations was performed separately. Obtained value...
-
Fractional differential equations with causal operators
PublicationWe study fractional differential equations with causal operators. The existence of solutions is obtained by applying the successive approximate method. Some applications are discussed including also the case when causal operator Q is a linear operator. Examples illustrate some results.
-
Fuzzy Multi-Regional Fractional PID controller for Pressurized Water nuclear Reactor
PublicationThe paper presents the methodology for the synthesis of a Fuzzy Multi-Regional Fractional Order PID controller (FMR-FOPID) used to control the average thermal power of a PWR nuclear reactor in the load following mode. The controller utilizes a set of FOPID controllers and the fuzzy logic Takagi-Sugeno reasoning system. The proposed methodology is based on two optimization parts. The first part is devoted to finding the optimal...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublicationThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
ORF Approximation in Numerical Analysis of Fractional Point Kinetics and Heat Exchange Model of Nuclear Reactor
PublicationThis paper presents results concerning numerical solutions of the fractional point kinetics (FPK) and heat exchange (HE) model for a nuclear reactor. The model consists of a nonlinear system of fractional and ordinary differential equations. Two methods to solve the model are compared. The first one applies Oustaloup Recursive Filter (ORF) and the second one applies Refined Oustaloup Recursive Filter (RORF). Simulation tests have...
-
Numerical solution analysis of fractional point kinetics and heat exchange in nuclear reactor
PublicationThe paper presents the neutron point kinetics and heat exchange models for the nuclear reactor. The models consist of a nonlinear system of fractional ordinary differential and algebraic equations. Two numerical algorithms are used to solve them. The first algorithm is application of discrete Grünwald-Letnikov definition of the fractional derivative in the model. The second involves building an analog scheme in the FOMCON Toolbox...
-
Fractional neutron point kinetics equations for nuclear reactor dynamics – Numerical solution investigations
PublicationThis paper presents results concerning numerical solutions to a fractional neutron point kinetics model for a nuclear reactor. The paper discusses and expands on results presented in (Espinosa-Paredes et al., 2011). The fractional neutron point kinetics model with six groups of delayed neutron precursors was developed and a numerical solution using the Edwards’ method was proposed (Edwards et al., 2002). The mathematical model...
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublicationIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
Variable Fractional Delay Filter Design Using a Symmetric Window
PublicationIn this paper a numerically efficient method for designing a nearly optimal variable fractional delay (VFD) filter based on a simple and well-known window method is presented. In the proposed method a single window extracted from the optimal filter with fixed fractional delay (FD) is divided into even and odd part. Subsequently, the odd part is discarded and symmetric even part of the extracted window is used to design a family...