Search results for: SLOT MONOPOLE, ANTENNA ARRAY, FEEDING NETWORK MODELING
-
Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates
PublicationOver the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
Detection and Mitigation of GPS Spoofing Based on Antenna Array Processing
PublicationIn this article authors present an application of spatial processing methods for GPS spoofing detection and mitigation. In the first part of this article, a spoofing detection method, based on phase delay measurements, is proposed. Accuracy and precision of phase delay estimation is assessed for various qualities of received signal. Spoofing detection thresholds are determined. Efficiency of this method is evaluated in terms of...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Highly Miniaturized Self-Diplexed U-Shaped Slot Antenna Based on Shielded QMSIW
PublicationThis article presents an efficient yet simple design approach to highly miniaturized cavity-backed self-diplexing antenna (SDA) with high-isolation. The structure employs a shielded quarter-mode substrate integrated waveguide (QMSIW). Two U-shaped slots are engraved on the top conducting plane, which realize two frequency bands and significant size reduction. The slots are excited by two independent 50Ω orthogonal feed-lines to...
-
Design and optimization of a novel miniaturized low-profile circularly polarized wide-slot antenna
PublicationThis paper presents a novel structure of a compact circularly polarized (CP) antenna. CP is obtained using a parasitic quasi-rectangular strip placed coplanar to the feedline. A ground plane perturbation combined with the asymmetric geometry of the coplanar waveguide ground planes is utilized to excite additional CP modes. All antenna dimensions are rigorously optimized to achieve the best possible performance in terms of the impedance...
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublicationElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
A Conformal Circularly Polarized Series-Fed Microstrip Antenna Array Design
PublicationA conformal circularly polarized series-fed microstrip array design for broadside radiation is presented. The array aperture under design is conformal to a cylindrical surface of a given radius. The approach we present primarily addresses focusing of the circularly polarized major lobe of the conformal array by proper dimensioning of the aperture spacings. The proposed analytical models yield the values of the element spacings...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction
PublicationThe employment of full-wave electromagnetic (EM) analysis is a practical necessity in the design of contemporary antenna structures. This is because simpler models are generally not available or of limited accuracy. At the same time, EM-based design is computationally expensive. Consequently, the ways of accelerating tasks such as parametric optimization or uncertainty quantification have to be sought. A possible workaround that...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Unequally-Spaced Slot Strategy for Radiation Null Reduction in Single SIW-Embedded Antenna Element
PublicationThe incorporation of higher-order modes (HOMs) can substantially augment the antenna gain and bandwidth, but this improvement is typically accompanied by compromised radiation performance including radiation nulls and higher side lobe levels. In this study, an inventive strategy is introduced to reduce the radiation nulls and the side lobe levels of a single antenna element by positioning multiple slots of the radiating element...
-
Low-cost multiband four-port phased array antenna for sub-6 GHz 5G applications with enhanced gain methodology in Radio-over-fiber systems using modulation instability
PublicationPhased array antenna (PAA) technology is essential for applications requiring high gain and wide bandwidth, such as sensors, medical, and 5G. Achieving such a design, however, is a challenging and intricate process that calls for precise calculations and a combination of findings to alter the phase and amplitude of each unit. Furthermore, coupling effects between these PAA structure elements can only be completed with the use of...
-
Ultra-Compact Self-Quadruplexing Microfluidically Frequency Reconfigurable Slot Antenna Using Half-Mode SIW
PublicationIn this brief, the design of an ultra-compact self-quadruplexing frequency reconfigurable antenna (SQFRA) utilizing a half-mode substrate-integrated waveguide (HMSIW) and microfluidic channels is discussed. Four HMSIW cavities fed by four microstrip lines and slots are used to construct a highly compact antenna. The microstrip feedings to the HMSIW cavities are applied in such a way that the proposed antenna exhibits self-quadruplexing...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublicationThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
-
An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors
PublicationW pracy przedstwiono możliwości zastoswania sieci czujników FBG i sztucznych sieci neuronowych do detekcji uszkodzeń w poszyciu adaptacyjnego skrzydła.
-
Comparison of single best artificial neural network and neural network ensemble in modeling of palladium microextraction
Publication -
Network Modeling and Analysis in Health Informatics and Bioinformatics
Journals -
Effect of ground plane size on radiation pattern in IFF/SSR microstrip antenna on thick substrate fed by H type slot
PublicationW pracy pokazano numeryczne i eksperymentalne wyniki badania wpływu rozmiarówmasy na charakterystyki promieniowania anteny dla zastosowań IFF/SSR, zrealizowanej na grubym podłożu i zasilanej przez szczelinę typu H. Pokazane wyniki dla anteny oryginalnej porównano z wynikami uzyskanymi po zmniejszeniu wymiarów masy (w każdym z kierunków). Pokazano jak dalece można zminimalizować wymiary anteny, przy założonym poziomie listków bocznych.
-
Modeling of TEC Variations Based on Signals from Near Zenith GNSS Satellite Observed by Dense Regional Network
PublicationCurrently the substantial successes in high-resolution ionospheric mapping is declared in many publications. Nevertheless, up to now there are no examples of dynamic visualization of TEC disturbances on regional scale with as high resolution as tropospheric models. Over the years, ionosphere has been modeling basing on the simple assumption, that it is a thin layer, which surrounds the Earth at some arbitrary height. However, the...
-
Modeling of traffic safety indictors on Polish national road network
PublicationAlthough decreased from 2001 to 2013, Poland’s road deaths improved at a slower rate than the rest of the EU, leaving Poland as one of the worst road safety performing countries in the EU. The national road network in Poland, despite the dynamic transformation and development, still does not conform to the EU safety standards. Similar situation exists in other EU countries, particularly those in Central and Eastern Europe. Safety...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublicationMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
High-resolution microscopy assisted mechanical modeling of ultrafine electrospun network
Publication -
Ultracapacitor modeling and control with discrete fractional order artificial neural network
Publication -
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Modeling a Traffic Remapping Attack Game in a Multi-hop Ad Hoc Network
PublicationIn multi-hop ad hoc networks, selfish nodes may unduly acquire high quality of service (QoS) by assigning higher priority to source packets and lower priority to transit packets. Such traffic remapping attacks (TRAs) are cheap to launch, impossible to prevent, hard to detect, and harmful to non-selfish nodes. While studied mostly in single-hop wireless network settings, TRAs have resisted analysis in multi-hop settings. In this paper...
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublicationThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
Adrian Bekasiewicz dr hab. inż.
PeopleAdrian Bekasiewicz received the MSc, PhD, and DSc degrees in electronic engineering from Gdansk University of Technology, Poland, in 2011, 2016, and 2020, respectively. In 2014, he joined Engineering Optimization & Modeling Center where he held a Research Associate and a Postdoctoral Fellow positions, respectively. Currently, he is an Associate Professor with Gdansk University of Technology, Poland. His research interests include...
-
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
PublicationThis paper presents a novel frequencyreconfigurable self-diplexing antenna (SDA) utilizing a hybrid substrate-integrated waveguide (SIW). The antenna comprises a radiating slot, a feeding network, and a hybrid SIW cavity featuring half-mode circular and half-mode rectangular SIW structures. The unique feature of this antenna lies in its fine-tuning capability of each resonant frequency by inserting or injecting solid and liquid...
-
Design and Optimization of a Compact Planar Radiator for UWB Applications and Beyond
PublicationA compact monopole antenna for ultra-wideband (UWB) and beyond applications has been proposed. The radiator is based on the monopole topology. The super-wideband behavior has been achieved using a combination of spline-based modifications applied to the driven element, as well as utilization of a tapered feed and a slot-modified ground plane. The electrical performance of the structure has been tuned using a numerical optimization...
-
Simulation-Based Design of Microstrip Linear Antenna Arrays Using Fast Radiation Response Surrogates
PublicationFast yet accurate technique for simulation-based design of linear arrays of microstrip patch antennas is presented. Our technique includes: (i) optimization of the corrected array factor of the antenna array under design for a phase excitation taper resulting in reduced side lobes; (ii) simulation-driven optimization of the array element for element dimensions resulting in matching at and about operational frequency, and (iii)...
-
Cost-efficient multi-objective design optimization of antennas in highly-dimensional parameter spaces
PublicationMulti-objective optimization of antenna structures in highly-dimensional parameter spaces is investigated. For expedited design, variable-fidelity EM simulations and domain patching algorithm are utilized. The results obtained for a monopole antenna with 13 geometry parameters are compared with surrogate-assisted optimization involving response surface approximation modeling.
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Measurements of electrically small antenna radiation patterns in non-anechoic environments using TGM
Open Research DataThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for four antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, super-ultrawideband antenna, and a quasi-Yagi component. The responses have been obtained at the selected frequencies of interest...
-
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publication -
Correction of far-field measurements obtained in non-anechoic test site
Open Research DataThe dataset contains raw and processed measurements of radiation pattern characteristics performed in non-anechoic regime for two geometrically small antenna structures: a spline-parameterized Vivaldi structure and a compact spline-based monopole. The responses have been obtained at the selected frequencies of interest as a function of mentioned structures...
-
A Simple-Topology Compact Broadband Circularly Polarized Antenna With Unidirectional Radiation Pattern
PublicationIn this letter, a geometrically simple, reflector-backed single-point-fed circularly polarized (CP) antenna with unidirectional radiation pattern is presented. The structure comprises a simple coplanar waveguide (CPW) feeding circuit with an open slot etched on one side of the coplanar ground. The enhanced CP bandwidth is obtained by combining the loop mode, the slot mode, and the asymmetrical configuration of the coplanar ground...
-
Radiation pattern measurements of geometrically small antennas performed in non-anechoic environments
Open Research DataThe dataset contains unprocessed measurements of radiation pattern characteristics performed in non-anechoic regime for three geometrically small antenna structures: a spline-parameterized Vivaldi structure, a compact spline-based monopole, and a quasi-Yagi geometry with enhanced bandwidth. The responses have been obtained over broad frequency ranges...
-
Numerical optimization of planar antenna structures using trust-region algorithm with adaptively adjusted finite differences
Open Research DataThe dataset contains initial designs and optimization results for three planar structures that include quasi-patch antenna for WLAN applications, compact spline-parameterized monopole dedicated for ultra-wideband applications, as well as rectifier for energy harvesting with enhanced bandwidth. The numerical results for the first two structures are also...
-
Coplanar Waveguide Fed Ultra-Wideband Antenna Over the Planar and Cylindrical Surfaces
PublicationThe investigation of coplanar waveguide fed ultra-wideband antenna and the influence of the proximity of different materials on the reflection coefficients and radiation character-istics is presented. The antenna is composed of two circular coplanar strips which enclose slot aperture of similar shape and is designed on a thin and flexible substrate. From the modeling and experimental tests the antenna shows good performance in...
-
Circularly Polarized Metalens Antenna Design for 5G NR Sub-6 GHz Communication Systems
Publication5G NR (new radio) FR1 range refers to as Sub-6GHz band (410MHz to 7125MHz and 3.4GHz to 6GHz). In this paper, the frequency range of interest is from 3.4 to 6GHz, as many cellular companies are focusing on this Sub-6GHz band. A wideband circularly polarized (CP) antenna radiator is designed with diamond shape patches, fed by a microstrip line at the bottom through a rectangular shape wide slot on a ground plane. The proposed CP...
-
Pin-on-Substrate Gap Waveguide: An Extremely Low-Cost Realization of High-Performance Gap Waveguide Components
PublicationConsidering the limitations of currently available technologies for the realization of microwave components and antennas, a trade-off between different factors including the efficiency and fabrication cost is required. The main objective of this letter is to propose a novel method for the realization of gap waveguides (GWGs) that take advantage of conventional PCB fabrication technology, thus are low cost and light weight. Moreover,...
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublicationThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
Beam Steerable MIMO Antenna Based on Conformal Passive Reflectarray Metasurface for 5G Millimeter-Wave Applications
PublicationA conformal reflectarray fed by a dual-band multiple-input multiple-output (MIMO) antenna is proposed for low-cost beam steering applications in 5G Millimeter-wave frequency bands. The beam steering is accomplished by selecting a specific port in the MIMO antenna. Each MIMO port is associated with a beam that points in a different direction due to a conformal reflectarray. This novel reflectarray antenna design has the advantages...