displaying 1000 best results Help
Search results for: error back-propagation
-
Destruction of AFM probes during normal operation
Open Research DataThe quality of the images obtained with the use of an atomic force microscope is determined by the state of the blade interacting with the tested material. Image artifacts can be generated by various reasons, such as oxidation, contamination or an error in blade fabrication, but also appear as a result of the repeated scanning process and inevitable...
-
Uncertainty Quantification of Additive Manufacturing Post-Fabrication Tuning of Resonator-Based Microwave Sensors
PublicationReconfigurability, especially in terms of the ability of adjusting the operating frequency, has become an important prerequisite in the design of modern microwave components and systems. It is also pertinent to microwave sensors developed for a variety of applications such as characterization of material properties of solids or liquids. This paper discusses uncertainty quantification of additive-manufacturing-based post-fabrication...
-
RSS-based DoA Estimation Using ESPAR Antennas and Interpolated Radiation Patterns
PublicationIn this letter, it is shown how an algorithm, which employs received signal strength (RSS) values in order to estimate direction-of-arrival (DoA) of impinging signals in wireless sensor network (WSN) nodes equipped with electronically steerable parasitic array radiator (ESPAR) antennas, can easily be improved by applying an interpolation algorithm to radiation patterns recorded in the calibration phase of the DoA estimation process....
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublicationFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
A Broadband Circularly Polarized Wide-Slot Antenna with a Miniaturized Footprint
PublicationThis letter presents a novel and simple feeding technique for exciting orthogonal components in a wide-slot antenna. In this technique, a rectangular bracket-shape parasitic strip is placed at the open end of the straight microstrip line to excite the fundamental horizontal and vertical components of the circular polarization (CP). The proposed technique—when employed in conjunction with the asymmetrical geometry of coplanar waveguide...
-
Simple 2-D Direction-of-Arrival Estimation Using an ESPAR Antenna
PublicationIn this letter, it has been shown how an electronically steerable parasitic array radiator (ESPAR) antenna can be used for 2-D direction-of-arrival (DoA) estimation employing received signal strength (RSS) values only. The proposed approach relies on changes in RSS values recorded at the antenna output port observed for different vertical and horizontal directions, while antenna’s main beam sweeps 360° area around the ESPAR antenna. Based...
-
Uniform sampling in constrained domains for low-cost surrogate modeling of antenna input characteristics
PublicationIn this letter, a design of experiments technique that permits uniform sampling in constrained domains is proposed. The discussed method is applied to generate training data for construction of fast replacement models (surrogates) of antenna input characteristics. The modeling process is design-oriented with the surrogate domain spanned by a set of reference designs optimized with respect to the performance figures and/or operating...
-
Objective relaxation algorithm for reliable simulation-driven size reduction of antenna structure
PublicationThis letter investigates reliable size reduction of antennas through electromagnetic-driven optimization. It is demonstrated that conventional formulation of the design task by direct footprint miniaturization with imposing constraints on electrical performance parameters may not lead to optimum results. The reason is that—in a typical antenna structure—only a few geometry parameters explicitly determine the antenna footprint,...
-
Rapid design closure of linear microstrip antenna array apertures using response features
PublicationA simple yet reliable approach to a rapid design closure of linear antenna array apertures at the electromagnetic (EM)-simulation level is proposed. Our methodology exploits an underlying array factor (AF) model suitably corrected by means of characteristic points (angles and levels) of the radiation pattern of the EM model of the antenna array aperture. This conveniently allows for controlling both the side lobe levels...
-
Reduced-cost constrained miniaturization of wideband antennas using improved trust-region gradient search with repair step
PublicationIn the letter, an improved algorithm for electromagnetic (EM)-driven size reduction of wideband antennas is proposed. Our methodology utilizes variable-fidelity EM simulation models, auxiliary polynomial regression surrogates, as well as multi-point response correction. The constraint handling is implicit, using penalty functions. The core optimization algorithm is a trust-region gradient search with a repair step added in order...
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublicationIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
Implicit Space Mapping for Variable-Fidelity EM-Driven Design of Compact Circuits
PublicationSpace mapping (SM) belongs to the most successful surrogate-based optimization (SBO) methods in microwave engineering. Among available SM variations, implicit SM (ISM) is particularly attractive due to its simplicity and separation of extractable surrogate model parameters and design variables of the circuit/system at hand. Unlike other SM approaches, ISM exploits a set of preassigned parameters to align the surrogate with the...
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublicationIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Model Correction and Optimization Framework for Expedited EM-Driven Surrogate-Assisted Design of Compact Antennas
PublicationDesign of compact antennas is a numerically challenging process that heavily relies on electromagnetic (EM) simulations and numerical optimization algorithms. For reliability of simulation results, EM models of small radiators often include connectors which—despite being components with fixed dimensions—significantly contribute to evaluation cost. In this letter, a response correction method for antenna models without connector,...
-
Cost-efficient design optimization of compact patch antennas with improved bandwidth
PublicationIn this letter, a surrogate-assisted optimization procedure for fast design of compact patch antennas with enhanced bandwidth is presented. The procedure aims at addressing a fundamental challenge of the design of antenna structures with complex topologies, which is simultaneous adjustment of numerous geometry parameters. The latter is necessary in order to find a truly optimum design and cannot be executed-at the level of high-fidelity...
-
Pareto Ranking Bisection Algorithm for Expedited Multi-Objective Optimization of Antenna Structures
PublicationThe purpose of this letter is introduction of a novel methodology for expedited multi-objective design of antenna structures. The key component of the presented approach is fast identification of the initial representation of the Pareto front (i.e., a set of design representing the best possible trade-offs between conflicting objectives) using a Pareto-ranking bisection algorithm. The algorithm finds a discrete set of Pareto-optimal...
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublicationDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Single-Anchor Indoor Localization Using ESPAR Antenna
PublicationIn this paper a new single-anchor indoor localization concept employing Electronically Steerable Parasitic Array Radiator (ESPAR) antenna has been proposed. The new concept uses a simple fingerprinting algorithm adopted to work with directional main beam and narrow minimum radiation patterns of ESPAR antenna that scans 360° area around the base station, while the signal strength received from a mobile terminal is being recorded...
-
A structure and simulation-driven design of compact CPW-fed UWB antenna
PublicationIn this letter, a structure of a miniaturized ultra-wideband CPW-fed antenna and its design proce-dure are presented. The antenna is a modified version of the design previously proposed in the literature, with additional degrees of freedom introduced in order to improve the structure flexibility. The small size is achieved by executing a rigorous optimization procedure that consists of two stages: (i) smart random search carried...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublicationA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Simulation-Based Design of Microstrip Linear Antenna Arrays Using Fast Radiation Response Surrogates
PublicationFast yet accurate technique for simulation-based design of linear arrays of microstrip patch antennas is presented. Our technique includes: (i) optimization of the corrected array factor of the antenna array under design for a phase excitation taper resulting in reduced side lobes; (ii) simulation-driven optimization of the array element for element dimensions resulting in matching at and about operational frequency, and (iii)...
-
Fast Multi-Objective Optimization of Narrow-Band Antennas Using RSA Models and Design Space Reduction
PublicationComputationally efficient technique for multi-objective design optimization of narrow-band antennas is presented. In our approach, the corrected low-fidelity antenna model (obtained through coarse-discretization EM simulations) is enhanced using frequency scaling and response correction, sampled, and utilized to obtain a fast response surface approximation (RSA) antenna surrogate. The RSA model is constructed in the reduced design space....
-
Hybrid Technique Combining the FDTD Method and Its Convolution Formulation Based on the Discrete Green's Function
PublicationIn this letter, a technique combining the finite-difference time-domain (FDTD) method and its formulation based on the discrete Green's function (DGF) is presented. The hybrid method is applicable to inhomogeneous dielectric structures that are mutually coupled with wire antennas. The method employs the surface equivalence theorem in the discrete domain to separate the problem into a dielectric domain simulated using the FDTD method...
-
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
a novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications
Publication -
On the approximation of the UWB dipole elliptical arms with stepped-edge polygon
PublicationA simple method of approximation of the ellipticalpatch with stepped-edge polygon is proposed as an introductionto wider studies over the planar ultrawideband (UWB) antennas.The general idea is to replace the elliptical patch with an equivalentpolygonal patch, with minimum loss in the performance. Theprinciples of the proposed method are presented in this letter, aswell as the results of performed numerical studies and its experimentalverification....
-
Fast implementation of FDTD-compatible green's function on multicore processor
PublicationIn this letter, numerically efficient implementation of the finite-difference time domain (FDTD)-compatible Green's function on a multicore processor is presented. Recently, closed-form expression of this discrete Green's function (DGF) was derived, which simplifies its application in the FDTD simulations of radiation and scattering problems. Unfortunately, the new DGF expression involves binomial coefficients, whose computations...
-
Simple 60 GHz Switched Beam Antenna for 5G Millimeter-Wave Applications
Publication -
Electromagnetic curtain effect and tunneling properties of multilayered periodic structures
PublicationArtykuł przedstawia analizę rozpraszania fali elektromagnetycznej na wielowarstwowych strukturach periodycznych. W analizowanych strukturach zaobserwowano efekt tunelowania fali oraz efekt przestrajania pasm zaporowych/przepustowych (efekt kurtyny elektromagnetycznej)
-
Tuning a Hybrid GPU-CPU V-Cycle Multilevel Preconditioner for Solving Large Real and Complex Systems of FEM Equations
PublicationThis letter presents techniques for tuning an accelerated preconditioned conjugate gradient solver with a multilevel preconditioner. The solver is optimized for a fast solution of sparse systems of equations arising in computational electromagnetics in a finite element method using higher-order elements. The goal of the tuning is to increase the throughput while at the same time reducing the memory requirements in order to allow...
-
A New Type of Macro-Elements for Efficient Two-Dimensional FEM Analysis
PublicationThis letter deals with a model order reduction technique applicable for driven and eigenvalue problems solved using the finite element method (FEM). It allows one to efficiently compute electromagnetic parameters of structures comprising small features that require strong local mesh refinement. The subdomains of very fine mesh are separated from the global domain as so called macro-elements that undergo model reduction. The macro-elements...
-
Accuracy, Memory and Speed Strategies in GPU-based Finite-Element Matrix-Generation
PublicationThis paper presents strategies on how to optimize GPU-based finite-element matrix-generation that occurs in the finite-element method (FEM) using higher order curvilinear elements. The goal of the optimization is to increase the speed of evaluation and assembly of large finite-element matrices on a single GPU (Graphics Processing Unit) while maintaining the accuracy of numerical integration at the desired level. For this reason,...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublicationIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Structure and computationally-efficient simulation-driven design of compact UWB monopole antenna
PublicationIn this letter, a structure of a small ultra-wideband (UWB) monopole antenna, its design optimization procedure as well as experimental validation are presented. According to our approach, antenna compactness is achieved by means of a meander line for current path enlargement as well as the two parameterized slits providing additional degrees of freedom that help to ensure good impedance matching. For the sake of reliability, the...
-
Implementation of FDTD-Compatible Green's Function on Graphics Processing Unit
PublicationIn this letter, implementation of the finite-difference time domain (FDTD)-compatible Green's function on a graphics processing unit (GPU) is presented. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates its applications in the FDTD simulations of radiation and scattering problems. Unfortunately, implementation of the new DGF formula in software requires a multiple precision...
-
Automatic Correction of Non-Anechoic Antenna Measurements Using Complex Morlet Wavelets
PublicationReal-world performance of antennas is normally tested in anechoic chambers (ACs). Alternatively, experimental validation can be performed in non-anechoic environments and refined in the course of post-processing. Unfortunately, the existing methods are difficult to setup and prone to failure. In this letter, a wavelet-based framework for correction of non-anechoic antenna measurements has been proposed. The method involves automatic...
-
Absorbing Boundary Conditions Derived Based on Pauli Matrices Algebra
PublicationIn this letter, we demonstrate that a set of absorbing boundary conditions (ABCs) for numerical simulations of waves, proposed originally by Engquist and Majda and later generalized by Trefethen and Halpern, can alternatively be derived with the use of Pauli matrices algebra. Hence a novel approach to the derivation of one-way wave equations in electromagnetics is proposed. That is, the classical wave equation can be factorized...
-
Highly-Miniaturized Self-Quadruplexing Antenna Based on Substrate-Integrated Rectangular Cavity
PublicationThis paper introduces a novel self-quadruplexing antenna (SQA) architecture using a substrate-integrated rectangular cavity (SIRC) for compact size, wide-frequency re-designability, and high isolation responses. The proposed SQA is developed by engraving two U-shaped slots (USSs) on the top conductor of the SIRC. The USSs are excited by employing four microstrip feedlines to achieve self-quadruplexing antenna characteristics. The...
-
Multi-Beam Antenna for Ka-Band CubeSat Connectivity Using 3-D Printed Lens and Antenna Array
PublicationIn this paper, the design of a passive multi-beam lens antenna is proposed for the CubeSat space communication system as an alternative application of a 2-D microstrip antenna array that has originally been designed for a 39 GHz 5 G MU-MIMO system. The half-ellipsoid lens is 3-D printed using stereolithography (SLA) technology. The antenna prototype is capable of selecting the main beam between 16 different directions with a gain...
-
FPGA Acceleration of Matrix-Assembly Phase of RWG-Based MoM
PublicationIn this letter, the field-programmable-gate-array accelerated implementation of matrix-assembly phase of the method of moments (MoM) is presented. The solution is based on a discretization of the frequency-domain mixed potential integral equation using the Rao-Wilton-Glisson basis functions and their extension to wire-to-surface junctions. To take advantage of the given hardware resources (i.e., Xilinx Alveo U200 accelerator card),...
-
Design and Optimization of Metamaterial-Based Dual-Band 28/38 GHz 5G MIMO Antenna with Modified Ground for Isolation and Bandwidth Improvement
PublicationThis letter presents a high-isolation dual-band multiple-input multiple-output (MIMO) antenna based on the ground plane modification and optimized metamaterials (MMs) for 5G millimeter-wave applications. The antenna is a monopole providing a dual-band response at 5G 28/38 bands with a small physical size (4.8 × 2.9 × 0.762 mm3, excluding the feeding line). The MIMO consists of two symmetric radiating elements arranged adjacently...
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Dual-Polarized Wideband Bandpass Metasurface-Based Filter
PublicationThis paper presents a novel metasurface-based bandpass filter. The structure is realized by simply patterning a double-sided AD250 substrate, and does not require any vias or insertion of lumped elements. The top layer is an annular- aperture-array with multiple inner conductors, whereas the bottom layer is a first-order Hilbert-curve array. FEM-based simulation results of the filter are obtained using HFSS. The experimental validation...
-
Design and experimental verification of multi-layer waveguide using pin/hole structure
PublicationThis study presents a novel technique for minimizing RF leakage in metallic hollow waveguides fabricated using the multilayer split-block method. By integrating a pin/hole wall into the split-block multilayers, a substantial reduction of RF leakage can be achieved while reducing the circuit size and mitigating the performance variations. To validate the proposed approach, a slot antenna fed by single ridge waveguide has been prototyped...
-
Pin-on-Substrate Gap Waveguide: An Extremely Low-Cost Realization of High-Performance Gap Waveguide Components
PublicationConsidering the limitations of currently available technologies for the realization of microwave components and antennas, a trade-off between different factors including the efficiency and fabrication cost is required. The main objective of this letter is to propose a novel method for the realization of gap waveguides (GWGs) that take advantage of conventional PCB fabrication technology, thus are low cost and light weight. Moreover,...