Search results for: TOPOLOGY-AGNOSTIC ANTENNA
-
RSS-Based DoA Estimation in 802.11p Frequency Band Using ESPAR Antenna and PPCC-MCP Method
PublicationIn this paper, the concept of direction of arrival (DoA) estimation using electronically steerable parasitic array radiator (ESPAR) antenna designed to operate in IEEE 802.11p vehicular communication standard has been investigated with respect to different possible elevation angles of a radio frequency (RF) signal impinging the antenna. To this end, two different possible sets of the 3D antenna radiation patterns have been used...
-
TR-Based Antenna Design with Forward FD: The Effects of Step Size on the Optimization Performance
PublicationNumerical methods are important tools for design of modern antennas. Trust-region (TR) methods coupled with data-efficient surrogates based on finite differentiation (FD) represent a popular class of antenna design algorithms. However, TR performance is subject to FD setup, which is normally determined a priori based on rules-of-thumb. In this work, the effect of FD perturbations on the performance of TR-based design is evaluated...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
An Optimized Ka-Band Low Profile Dual-Polarized Transmitarray Antenna With 2D Beam Switching
PublicationThis article presents an optimized dual-polarized transmitarray antenna (TA) designed for MIMO applications at the Ka-band, capable of switching beams in two directions. The antenna aperture uses a small unit cell with three layers of Taconic RF-35 dielectric substrates, which can be easily fabricated using PCB technology. The unit cell achieved a 360-degree phase shift and a transmission magnitude exceeding –0.4 dB at 28 GHz....
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublicationDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublicationDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
A Wideband Corrugated Ridged Horn Antenna with Enhanced Gain and Stable Phase Center for X- and Ku-Band Applications
PublicationIn this letter, a structure and design procedure of a novel double-flared conical horn antenna with an improved gain and a stable phase center is presented. The antenna incorporates a hybrid ridged and corrugated structure. A double-ridged section is responsible for ensuring a wideband operation, whereas the corrugated section supports the hybrid mode. The antenna impedance bandwidth (VSWR < 2) is 6 GHz to 20 GHz. Excellent performance...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
A Dual-Polarized 39 GHz 4x4 Microstrip Antenna Array for 5G MU-MIMO Airflight Cabin Connectivity
PublicationThis paper presents the design, fabrication, and experimental validation of a 39 GHz dual-polarized 4x4 microstrip antenna array. The array consists of 16 slot coupled circular microstrip patches, fed through SMPS connectors. The procedure requiring a reduced number of cables for measurement of the uniformly excited antenna array is also presented. The array exhibits 18 dBi peak gain and 2.9 GHz reflection bandwidth and is intended...
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublicationThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
Three-objective antenna optimization by means of kriging surrogates and domain segmentation
PublicationIn this paper, an optimization framework for multi-objective design of antenna structures is discussed which exploits data-driven surrogates, a multi-objective evolutionary algorithm, response correction techniques for design refinement, as well as generalized domain segmentation. The last mechanism is introduced to constrain the design space region subjected to sampling, which permits reduction of the number of training data samples...
-
Expedited design of microstrip antenna subarrays using surrogate-based optimization
PublicationComputationally efficient simulation-driven design of microstrip antenna subarrays is presented. The proposed design approach aims at simultaneous adjustment of all relevant geometry parameters of the subarray, which allows us to take into account the effect of the feeding network on the subarray radiation pattern (in particular, the side lobe level, SLL). In order to handle a large number of variables involved in the design process,...
-
Performance evaluation of GPS anti-spoofing system based on antenna array processing
PublicationThis article concerns the problem of detection and mitigation of spoofing attacks in Global Navigation Satellite Systems. First, background information about spoofing and its possible countermeasures is provided. Next, concept of a novel GPS anti-spoofing system based on antenna array processing is presented and implementation of prototype of this system is described. The third section outlines the performance evaluation of proposed...
-
Broadband Sonar with a Cylindrical Antenna
PublicationSkutkiem wzrostu szerokości widma sygnałów w sonarach z płaskimi antenami jest wzrost szerokości odchylanych wiązek, jeżeli beamformer dokonuje kompensacji faz tylko na częstotliwości środkowej widma. W artykule przedstawiono wyniki obliczeń, które odpowiadają na pytanie, czy podobny efekt występuje w szerokopasmowych sonarach z anteną cylindryczną. Obliczenia przeprowadzono dla anten nadawczych o szerokich wiązkach i anten odbiorczych...
-
Shielded HMSIW-based frequency-tunable self-quadruplexing antenna using different solid/liquid dielectrics
PublicationThis article proposes a frequency-tunable self-quadruplexing antenna based on a shielded half-mode substrate integrated waveguide (S-HMSIW). In order to reduce the size of the HMSIW cavity resonator and to obtain quad-band characteristics, a modied E-shaped slot is engraved on the top of the metal. The experimental validation is carried out after analyzing the data using a circuit model. Flexibility of each resonant frequency is...
-
Multitaper-Based Post-processing of Compact Antenna Responses Obtained in Non-anechoic Conditions
PublicationThe process of developing antenna structures typically involves prototype measurements. While accurate validation of far-field performance can be performed in dedicated facilities like anechoic chambers, high cost of construction and maintenance might not justify their use for teaching, or low-budget research scenarios. Non-anechoic experiments provide a cost-effective alternative, however the performance metrics obtained in such...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
A Multi-Antenna Scheme for Early Detection and Mitigation of Intermediate GNSS Spoofing
PublicationThis article presents a method for detecting and mitigating intermediate GNSS spoofing. In this type of attack, at its early stage, a spoofer transmits counterfeit signals which have slight time offsets compared to true signals arriving from satellites. The anti-spoofing method proposed in this article fuses antenna array processing techniques with a multipath detection algorithm. The latter is necessary to separate highly correlated...
-
Detection and Direction-of-Arrival Estimation of Weak Spread Spectrum Signals Received with Antenna Array
PublicationThis paper presents a method for the joint detection and direction of arrival (DOA) estimation of low probability of detection (LPD) signals. The proposed approach is based on using the antenna array to receive spread-spectrum signals hidden below the noise floor. Array processing exploits the spatial correlation between phase-delayed copies of the signal and allows us to evaluate the parameter used to make the decision about the...
-
Design and optimization of a novel compact broadband linearly/circularly polarized wide-slot antenna for WLAN and Wi-MAX applications
PublicationA novel topologically modified structure of a compact low profile wide-slot antenna for broadband applications is presented. The antenna comprises a modified E-shaped slot with unequal arm lengths in the ground plane, and a parasitic quasi-rectangular loop placed coplanar with the feedline. For exciting orthogonal modes with equal amplitude, a single-point feeding technique with an asymmetrical geometry of the coplanar waveguide...
-
Analyzing sets of phylogenetic trees obtained from bayesian MCMC process using topology metrics
PublicationThe reconstruction of evolutionary trees is one of the primary objectives in phylogenetics. Such a tree represents historical evolutionary relationship between different species or organisms. Tree comparisons are used for multiple purposes, from unveiling the history of species to deciphering evolutionary associations amongorganisms and geographical areas.In the paper, we describe a general method for comparing hylogenetic trees....
-
High Isolation Metamaterial-based Dual-band MIMO Antenna for 5G Millimeter-wave Applications
PublicationThis article presents a high-isolation metamaterial-based dual-band multiple-input multiple-output (MIMO) antenna for 5G millimeter-wave communication networks. The proposed antenna is a pentagon-shaped monopole that provides a dual-band response with a wide operating bandwidth at 5G 28/28 bands. The antenna is printed on 0.508-mm-thick Rogers RT5880 substrate of relative permittivity ɛr =2.2. It exhibits a small physical size...
-
Design of a Coplanar Waveguide-Fed Wideband Compact-Size Circularly Polarized Antenna and polarization-sense alteration
PublicationThis paper presents the design and validation of a geometrically simple circularly polarized(CP) structure featuring flat gain in the sub-6 GHz 5th generation spectrum. The proposed structure is based on coplanar-waveguide-fed, modified wide slot etched in the ground plane. For generating CP waves, the coplanar ground planes are designed with slight asymmetry in both the horizontal and vertical directions. Furthermore, the ground...
-
Simulation-Based Design of Microstrip Linear Antenna Arrays Using Fast Radiation Response Surrogates
PublicationFast yet accurate technique for simulation-based design of linear arrays of microstrip patch antennas is presented. Our technique includes: (i) optimization of the corrected array factor of the antenna array under design for a phase excitation taper resulting in reduced side lobes; (ii) simulation-driven optimization of the array element for element dimensions resulting in matching at and about operational frequency, and (iii)...
-
On Decomposition-Based Surrogate-Assisted Optimization of Leaky Wave Antenna Input Characteristics for Beam Scanning Applications
PublicationRecent years have witnessed a growing interest in reconfigurable antenna systems. Travelling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process of TWAs/LWAs is a challenging endeavor...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Automatic Correction of Non-Anechoic Antenna Measurements Using Complex Morlet Wavelets
PublicationReal-world performance of antennas is normally tested in anechoic chambers (ACs). Alternatively, experimental validation can be performed in non-anechoic environments and refined in the course of post-processing. Unfortunately, the existing methods are difficult to setup and prone to failure. In this letter, a wavelet-based framework for correction of non-anechoic antenna measurements has been proposed. The method involves automatic...
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublicationQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction
PublicationThe employment of full-wave electromagnetic (EM) analysis is a practical necessity in the design of contemporary antenna structures. This is because simpler models are generally not available or of limited accuracy. At the same time, EM-based design is computationally expensive. Consequently, the ways of accelerating tasks such as parametric optimization or uncertainty quantification have to be sought. A possible workaround that...
-
Direction of Arrival Estimation Based on Received Signal Strength Using Two-Row Electronically Steerable Parasitic Array Radiator Antenna
PublicationIn this paper, we present a novel approach to direction-of-arrival (DoA) estimation using two-row electronically steerable parasitic array radiator (ESPAR) antenna which has 12 passive elements and allows for elevation and azimuth beam switching using a simple microcontroller, relying solely on received signal strength (RSS) values measured at the antenna output port. To this end, we thoroughly investigate all 18 available 3D antenna...
-
Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures
PublicationMiniaturization is one of the important concerns of contemporary wireless communication systems, especially regarding their passive microwave components, such as filters, couplers, power dividers, etc., as well as antennas. It is also very challenging, because adequate performance evaluation of such components requires full-wave electromagnetic (EM) simulation, which is computationally expensive. Although high-fidelity EM analysis...
-
Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach
PublicationIn this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using lowprofile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely...
-
Highly Miniaturized Self-Diplexed U-Shaped Slot Antenna Based on Shielded QMSIW
PublicationThis article presents an efficient yet simple design approach to highly miniaturized cavity-backed self-diplexing antenna (SDA) with high-isolation. The structure employs a shielded quarter-mode substrate integrated waveguide (QMSIW). Two U-shaped slots are engraved on the top conducting plane, which realize two frequency bands and significant size reduction. The slots are excited by two independent 50Ω orthogonal feed-lines to...
-
Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications
PublicationThis paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
On EM-driven size reduction of antenna structures with explicit constraint handling
PublicationSimulation-driven miniaturization of antenna components is a challenging task mainly due to the presence of expensive constraints, evaluation of which involves full-wave electromagnetic (EM) analysis. The recommended approach is implicit constraint handling using penalty functions, which, however, requires a meticulous selection of penalty coefficients, instrumental in ensuring optimization process reliability. This paper proposes...
-
Circularly Polarized Metalens Antenna Design for 5G NR Sub-6 GHz Communication Systems
Publication5G NR (new radio) FR1 range refers to as Sub-6GHz band (410MHz to 7125MHz and 3.4GHz to 6GHz). In this paper, the frequency range of interest is from 3.4 to 6GHz, as many cellular companies are focusing on this Sub-6GHz band. A wideband circularly polarized (CP) antenna radiator is designed with diamond shape patches, fed by a microstrip line at the bottom through a rectangular shape wide slot on a ground plane. The proposed CP...
-
Design and Optimization of a Compact Super-Wideband MIMO Antenna with High Isolation and Gain for 5G Applications
PublicationThis paper presents a super-wideband multiple-input multiple-output (SWB MIMO) antenna with low profile, low mutual coupling, high gain and compact size for microwave and millimeter wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical size of 20 × 20 × 0.787 mm3. The combination of both square and elliptical shapes results in an exceptionally broad impedance...
-
A Planar-Structured Circularly Polarized Single-Layer MIMO Antenna for Wideband Millimetre-Wave Applications
PublicationIn this paper, a simple geometry, planar-structured printed multiple-input-multiple-output (MIMO) antenna utilizing dual circular polarization (CP) is presented. The proposed numerically and experimentally validated design features a fully grounded coplanar waveguide (CPW) and a systematically perturbed feedline radiator. The fringing electric (E) field along the feedline is altered by extruding periodic stubs on each side of the...
-
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications
PublicationDesign of ultra-wideband antennas for in-door localization applications is a challenging task. It involves development of geometry that maintains appropriate balance between the size and performance. In this work, a topologically-flexible monopole has been generated using a stratified framework which embeds a gradient-based trust-region (TR) optimization algorithm in a meta-loop that gradually increases the structure dimensionality....
-
A Wideband Rotary-Joint-Free H-Plane Horn Antenna With 360° Steerable Radiation Pattern Using Gap Waveguide Technology
PublicationConsidering the limitations of electronically steerable antennas such as limited steering span, gain degradation for large steering angles, complexity, and cost, this article is focused on the design of a simple mechanically steerable H-plane horn antenna. It is shown that since there is no need for an electrical connection between the top and bottom sections of a gap waveguide (GWG), if a sectoral horn is properly designed and realized...
-
Low-Profile Interdigitated UHF RFID Tag Antenna for Metallic Objects
PublicationThis article presents a novel miniature interdigitated ultra-high frequency (UHF) radio frequency identification (RFID) tag antenna that can be placed on metallic objects. The tag structure comprises two horizontal strip lines, each loaded with seven identical open stubs, and an integrated circuit (IC) chip connected directly to the feed lines in the middle of the structure. The perfect match to the IC chip’s impedance is realized...
-
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublicationA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Ultra-Wideband Vivaldi Antenna with an Integrated Noise-Rejecting Parasitic Notch Filter for Online Partial Discharge Detection
PublicationPower transformers and gas-insulated switchgear (GIS) play crucial roles in electrical power grids. However, they may suffer from degradation of insulation material due to wear and tear, leading to their imminent failure. Partial discharges (PDs) are an initial sign of insulation materials degradation which emit signals spanning various physical domains, including electromagnetic. PDs are temporally narrow, high-frequency, stochastic...
-
Dual-band Millimetre Wave MIMO Antenna with Reduced Mutual Coupling Based on Optimized Parasitic Structure and Ground Modification
PublicationIn this study, a high-isolation dual-band (28/38 GHz) multiple-input–multiple-output (MIMO) antenna for 5G millimeter-wave applications is presented. The antenna consists of two interconnected patches. The primary patch is connected to the inset feed, while the secondary patch is arc-shaped and positioned over the main patch, opposite to the feed. Both patches function in the lower 28 GHz band, while the primary patch is accountable...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...