Filters
total: 31090
-
Catalog
- Publications 9238 available results
- Journals 282 available results
- Conferences 60 available results
- People 118 available results
- Inventions 15 available results
- Projects 5 available results
- Laboratories 1 available results
- Research Equipment 1 available results
- e-Learning Courses 135 available results
- Events 10 available results
- Open Research Data 21225 available results
displaying 1000 best results Help
Search results for: BARS TORSION ELASTICITY STRAIN GRADIENT THEORY COUPLE STRESS THEORY FINITE ELEMENT METHOD
-
Saint-Venant torsion based on strain gradient theory
PublicationIn this study, the Saint-Venant torsion problem based on strain gradient theory is developed. A total form of Mindlin's strain gradient theory is used to acquire a general Saint-Venant torsion problem of micro-bars formulation. A new Finite Element formulation based on strain gradient elasticity theory is presented to solve the Saint-Venant torsion problem of micro-bars. Moreover, the problem is solved for both micro and macro...
-
Saint-Venant torsion based on strain gradient theory
Publication -
Strong ellipticity within the Toupin–Mindlin first strain gradient elasticity theory
PublicationWe discuss the strong ellipticity (SE) condition within the Toupin–Mindlin first strain gradient elasticity theory. SE condition is closely related to certain material instabilities and describes mathematical properties of corresponding boundary-value problems. For isotropic solids, SE condition transforms into two inequalities in terms of five gradient-elastic moduli.
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublicationWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Mixed 4-node shell element with assumed strain and stress in 6-parameter theory
PublicationWe propose a mixed hybrid 4-node shell elements based on Hu-Washizu principle. Apart from displacements both strains and stress fields are treated as independent fields. The element is derived in the framework of a general nonlinear 6-field shell theory with drilling rotation which is dedicated to the analysis of multifold irregular shells with intersections. The novelty of the presented results stems from the fact that the measures...
-
Ellipticity in couple-stress elasticity
PublicationWe discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublicationIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublicationThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublicationIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
On the plastic buckling of curved carbon nanotubes
PublicationThis research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned...
-
Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading
PublicationThis paper studies the fatigue crack initiation and fatigue crack propagation of notched cylindrical bars made of 7050-T6 aluminium alloy subjected to multiaxial bending-torsion loading. The sites of crack initiation and the angles of crack initiation were successfully predicted from the distribution of the first principal stress at the notch surface. Fatigue crack initiation lives were computed through the new concept of energy...
-
On forced vibrations of piezo-flexomagnetic nano-actuator beams
PublicationThe effect of excitation frequency on the piezomagnetic Euler-Bernoulli nanobeam taking the flexomagnetic material phenomenon into consideration is investigated in this chapter. The magnetization with strain gradients creates flexomagneticity. We couple simultaneously the piezomagnetic and flexomagnetic properties in an inverse magnetization. Resemble the flexoelectricity, the flexomagneticity is also size-dependent. So, it has...
-
On the effective properties of foams in the framework of the couple stress theory
PublicationIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.
-
On nonlinear dilatational strain gradient elasticity
PublicationWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
PublicationThis article is intended to analyze forced vibrations of a piezoelectric-piezomagnetic ceramic nanoplate by a new refined shear deformation plate theory in conjunction with higher-order nonlocal strain gradient theory. As both stress nonlocality and strain gradient size-dependent effects are taken into account using the higher-order nonlocal strain gradient theory, the governing equations of the composite nanoplate are formulated....
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublicationThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Finite Element Method
e-Learning CoursesItem Name : Finite Element Method- Abaqus learning Field of study : Civil Engineering Faculty : Faculty of Civil and Environmental Engineering Education level : Second degree studies Form of studies : Full-time studies Year of studies : 1 Study semester : 2 Start of the semester : November 2021 Academic year of the course : 2021/2022 Form of classes : Lecture, Laboratory
-
A Note on Reduced Strain Gradient Elasticity
PublicationWe discuss the particular class of strain-gradient elastic material models which we called the reduced or degenerated strain-gradient elasticity. For this class the strain energy density depends on functions which have different differential properties in different spatial directions. As an example of such media we consider the continual models of pantographic beam lattices and smectic and columnar liquid crystals.
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublicationIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublicationThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Theory of Elasticity and Plasticity
e-Learning CoursesThis course discusses the general theory of elastic and plastic material behavior of solids.
-
Finite Element Method Applications - winter 2022/2023
e-Learning CoursesFinite Element Method Applications - summer 2022/2023 Seminar.
-
Finite Element Method Applications - winter 2023/2024
e-Learning CoursesFinite Element Method Applications - winter 2022/2023 Seminar.
-
Finite Element Method Applications - summer 2022/2023
e-Learning CoursesFinite Element Method Applications - summer 2022/2023 Seminar.
-
Finite Element Method Applications 2023/2024 Summer
e-Learning CoursesFinite Element Method Applications - summer semester 2023/2024 Seminar.
-
Finite Element Method Applications 2024/2025 winter
e-Learning CoursesFinite Element Method Applications - winter semester 2024/2025 Seminar.
-
On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes
PublicationMotivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated...
-
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
PublicationIn the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing...
-
Theory of Elasticity and Plasticity 2023
e-Learning CoursesThis course discusses the general theory of elastic and plastic material behavior of solids.
-
Theory of Elasticity and Plasticity 2024
e-Learning CoursesThis course discusses the general theory of elastic and plastic material behavior of solids.
-
Equivalent 4-node enhanced assumed strain and hybrid stress shell elements in 6-parameter theory
PublicationWe discuss the equivalence of semi-enhanced assumed strain (EAS) and semi-hybrid stress (SEM) shell finite elements. We use the general nonlinear 6-field shell theory with kinematics composed of generalized displacements composed of the translation field and the rotation field. Due to the presence of rotation tensor the elements have naturally six nodal engineering degrees of freedom. We propose interpolation for a strain field...
-
On Dynamic Boundary Conditions Within the Linear Steigmann-Ogden Model of Surface Elasticity and Strain Gradient Elasticity
PublicationWithin the strain gradient elasticity we discuss the dynamic boundary conditions taking into account surface stresses described by the Steigmann–Ogden model. The variational approach is applied with the use of the least action functional. The functional is represented as a sum of surface and volume integrals. The surface strain and kinetic energy densities are introduced. The Toupin–Mindlin formulation of the strain gradient elasticity...
-
A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method
PublicationThe paper presents a constitutive model for concrete which combines a continuous and discontinuous fracture description. In a continuum regime, two different constitutive laws were used. First, a plasticity model with a Rankine failure criterion and an associated fl ow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. In order to capture the width of a localized zone and to obtain mesh-independent...
-
Victor Eremeev prof. dr hab.
People -
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublicationIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
GPU-accelerated finite element method
PublicationIn this paper the results of the acceleration of computations involved in analysing electromagnetic problems by means of the finite element method (FEM), obtained with graphics processors (GPU), are presented. A 4.7-fold acceleration was achieved thanks to the massive parallelization of the most time-consuming steps of FEM, namely finite-element matrix-generation and the solution of a sparse system of linear equations with the...
-
Jacobi and gauss-seidel preconditioned complex conjugate gradient method with GPU acceleration for finite element method
PublicationIn this paper two implementations of iterative solvers for solving complex symmetric and sparse systems resulting from finite element method applied to wave equation are discussed. The problem under investigation is a dielectric resonator antenna (DRA) discretized by FEM with vector elements of the second order (LT/QN). The solvers use the preconditioned conjugate gradient (pcg) method implemented on Graphics Processing Unit (GPU)...
-
On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral Lipschitz domains
PublicationWe provide the proof of an existence and uniqueness theorem for weak solutions of the equilibrium problem in linear dilatational strain gradient elasticity for bodies occupying, in the reference configuration, Lipschitz domains with edges. The considered elastic model belongs to the class of so-called incomplete strain gradient continua whose potential energy density depends quadratically on linear strains and on the gradient of...
-
Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity
PublicationWe discuss connections between the strong ellipticity condition and the infinitesimal instability within the nonlinear strain gradient elasticity. The strong ellipticity (SE) condition describes the property of equations of statics whereas the infinitesimal stability is introduced as the positive definiteness of the second variation of an energy functional. Here we establish few implications which simplify the further analysis...
-
Wiktoria Wojnicz dr hab. inż.
PeopleDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) List of papers (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis of...
-
Finite Element Method - winter 2022/2023
e-Learning CoursesCivil Engineering, Studia Stacjonarne II Stopień, II semestr
-
Finite Element Method - winter 2024/2025
e-Learning CoursesCivil Engineering, Studia Stacjonarne II Stopień, II semestr
-
A Review: Applications of the Spectral Finite Element Method
PublicationThe Spectral Finite Element Technique (SFEM) has Several Applications in the Sciences, Engineering, and Mathematics, which will be Covered in this Review Article. The Spectral Finite Element Method (SFEM) is a Variant of the Traditional Finite Element Method FEM that Makes use of Higher Order Basis Functions (FEM). One of the most Fundamental Numerical Techniques Employed in the Numerical Simulation is the SFEM, which Outperforms...
-
Wideband Macromodels in Finite Element Method
PublicationThis letter proposes a novel projection technique for accelerating Finite Element Method simulations. The algorithm is based on the Second-order Arnoldi Method for Passive Order Reduction (SAPOR). It involves generation of two projection bases and thanks to this it is applicable to the systems of equations, which contain the quadratic frequency-dependence in the input term, that arise when projection is applied locally in the selected...
-
Finite Element Method - winter 2024/2025 - kopia
e-Learning CoursesCivil Engineering, Studia Stacjonarne II Stopień, II semestr
-
Finite Element Method Applied in Electromagnetic NDTE: - A Review
PublicationThe paper contains an original comprehensive review of finite element analysis (FEA) applied by researchers to calibrate and improve existing and developing electromagnetic non-destructive testing and evaluation techniques, including but not limited to magnetic flux leakage (MFL), eddy current testing, electromagnetic-acoustic transducers (EMATs). Premium is put on the detection and modelling of magnetic field, as the vast majority...
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublicationA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
Torsion of restrained thin-walled bars of open constant bisymmetric cross-section
PublicationElastic and geometric stiffness matrices were derived using Castigliano's first theorem, for the case of torsion of restrained thin-walled bars of open constant bisymmetric cross-section. Functions which describe the angles of torsion were adopted from the solutions of thedifferential equation for restrained torsion. The exact solutions were simplified by expanding them in a power series. Numerical examples were taken from Kujawa...
-
Workshop on Graph Theory
EventsThe Gdańsk Workshop on Graph Theory (GWGT) is an annual, informal workshop whose goal is to provide a forum for scientists to meet, present their work, interact, and establish collaborations in the field of Graph Theory