Search results for: atom-molecule collisions
-
Electron Elastic Collisions with C3F6 Molecule
PublicationObliczono różniczkowy i scałkowany przekrój czynny na zderzenia elektronu z molekułą C3F6 w zakresie średnich i wysokich energii (50-1000eV). Obliczenia wykonano stosując metodę atomów niezależnych. Stwierdzono dobrą zgodność z wynikami oszacowanymi na podstawie eksperymentu.
-
Determination of energy-transfer distributions in ionizing ion-molecule collisions
PublicationThe main objective of this study is to determine the energy transfer occuring in ion-molecule collisions. In order to solve this problem, we followed two approaches; the first one by validating a purely experimental method and the second one by testing a new theoretical model M3C (Microcanonical Metropolis Monte Carlo).
-
Charge dependence of fragmentation process induced by ion collisions with furan molecule
PublicationThe goal of this work is to describe the system evolution after ion-molecule interaction. We combine different quantum chemistry and statistical mechanics approaches in order to give extended description of the process. Herein we report on a recent study of the fragmentation mechanism of neutral, singly- and doubly-ionized furan molecule in the gas phase.
-
coincidence investigation of inelastic electron-atom collisions with magnetic selection of scattering angle - feasibility study
PublicationOpisana została nowa aparatura do badania zderzeń elektronów z atomami metodą koincydencji z wykorzystaniem techniki lokalnego pola magnetycznego. Połączenie obu metod umożliwia wyznaczenie parametrów koincydencji w pełnym kącie rozproszenia. W pracy zaprezentowano pierwsze widma energii straconej oraz widma koincydencji.
-
Toward Mechanosynthesis of Diamondoid Structures: IX Commercial Capped CNT Scanning Probe Microscopy Tip as Nowadays Available Tool for Silylene Molecule and Silicon Atom Transfer
PublicationAccording to K. E. Drexler, advanced mechanosynthesis will employ advanced nanomachines, but advanced nanomachines will themselves be product of advanced mechanosynthesis. This circular relationship must be broken in SPM technology development. In the article, the possibility of use easy available commercial CNT tips to assembly silicon-based intermediate generations of nano-devices is considered. Mechanosynthesis of a target class...
-
Toward Mechanosynthesis of diamondoid structures: III. Quantum-chemical study of silylene molecule and silicon atom transfer mechanism from caped SWCNT tip to the reaction center on a hydrogenated Si(111) surface
PublicationOpublikowana wcześniej (Modelling Simul. Mater. Sci. Eng., Vol. 7, 1999, pp. 43-58) strategia mechanosyntezy struktur krzemu na uwodornionej płaszczyźnie Si(111) została poszerzona poprzez uwzględnienie ostrza w postaci zamkniętej SWCNT jako urządzenia kontrolującego położenie cząsteczki sililenu oraz atomu krzemu.
-
Toward mechanosynthesis of diamondoid structures: vii. simple strategy of building atomically perfect spm tip through attachment of c60 molecule to commercial silicon tip by controlled hydrogen atom desorption from tip asperity si(111) silicon surface
PublicationZaproponowano strategię unieruchomienia cząsteczki c60 na ostrzu chandlowego czujnika spm zbudowanego z krzemu. strategia składa się z czterech prostych etapów i prowadzi do ostrza spm o atomowo zdefiniowanej budowie. modelowanie właściwości ostrza sugeruje, że mogło by ono mieć zastosowanie w mechanosyntezie.
-
Hydrogen migration observed in fragmentation of the pyridine molecules in collisions with the H+, H2+, He+and He++cations
PublicationThe hydrogen atom migration preceding fragmentation of the pyridine molecules by the H+, H2+, He+ and He++ collisions has been investigated in the 5-2000 eV energy range. The pyridine molecule structure is lacking of the NH group, thus formation of the NH radicals is an evidence of the H atom relocation prior to the cation-induced fragmentation. The NH(A3Π) fragmentation yields measured by detecting its A3Π→X3Σ− fluorescence show...
-
Paweł Możejko dr hab.
People -
Jan Franz dr hab.
People -
Scattering of electrons by a 1,2-butadiene (C4H6) molecule: measurements and calculations
PublicationWe present the results of experimental and theoretical study on electron collisions with a 1,2-butadiene (H2C=C=CHCH3) molecule. Absolute grand-total cross sections (TCSs) were measured using a linear electron-transmission method for collision energies in the 0.5–300 eV range. Two distinct features in the TCS energy curve were detected: a narrow peak located at 2.3 eV and a broad enhancement centered around 9 eV. We attributed...
-
Electron scattering from 2-methyl–1,3-butadiene,C5H8, molecules: Role of methylation
PublicationWe report cross-section results from experimental and theoretical investigations into electron collisions with the 2-methyl–1,3-butadiene [C5H8] molecule. The current results are compared with our previous results for the 1,3-butadiene [C4H6] molecule, a structural homologue of 2-methyl–1,3-butadiene, to investigate how the methylation (the substitution of hydrogen atom by a methyl group) affects the shape and/or magnitude of the...
-
Electron scattering from tin tetrachloride (SnCl4) molecules
PublicationAbsolute grand-total cross section (TCS) for electron scattering from a tin tetrachloride, SnCl4, molecule was measured at electron-impact energies ranging from 0.6 to 300 eV, in the linear electron-transmission experiment. The measured TCS energy dependence shows two very pronounced enhancements peaking near 1.2 eV and around 9.5 eV, separated with a deep minimum centered close to 3 eV. The low energy structure is attributed to...
-
Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations
PublicationThe present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the ab initio calculations. The measurements of...
-
Tomasz Wąsowicz dr hab.
PeopleTomasz Wąsowicz's research was first related to high-resolution atomic spectroscopy and focused on measurements and analysis of the transition probabilities of the forbidden lines, the hyperfine and isotopic structure of spectral lines of heavy elements, Stark effect in the helium atom. Tomasz Wąsowicz currently studies physicochemical processes occurring during interactions of various forms of radiation with atoms and molecules...
-
Potential energy surfaces of the low-lying electronic states of the Li+LiCs system
PublicationAb initio quantum chemistry calculations are performed for the mixed alkali triatomic system. Global minima of the ground and first excited doublet states of the trimer are found and Born-Oppenheimer potential energy surfaces of the Li atom interacting with the LiCs molecule were calculated for these states. The lithium atom is placed at various distances and bond angles from the lithium-caesium dimer. Three-body nonadditive forces...
-
Spin-Orbit Coupling Matrix Elements in the KRb Molecule
Open Research DataThe allowed 190 spin-orbit coupling (SOC) matrix elements have been calculated for the singlet (s) and triplet (t) Sigma+ (S+), Pi (P), and Delta (D) electronic states of the KRb molecule. These SOCs are needed for investigations of areas connected with classical spectroscopy, deperturbation analysis of the observed spectra, atom-molecule and molecule-molecule...
-
TOTAL CROSS SECTION MEASUREMENTS FOR ELECTRON SCATTERING ON METHYL FORMATE (HCOOCH3) MOLECULE: METHYLATION EFFECT
PublicationWe present the absolute total cross section (TCS) for electron scattering from the methyl formate (HCOOCH3) molecule measured in the 10-300 eV energy range, with electrostatic electron spectrometer working in the linear transmission mode. Comparison of TCS for the HCOOCH3 molecule with that measured earlier for the formic acid (HCOOH) compound manifests the methylation effect i.e. the response of the electron scattering dynamics...
-
Catena-Poly[[(tetrahydrofuran-[kappa]O)lithium(I)]-bis([mu]-trimethylsilanolato-[kappa]2O:O)-gallium(III)-bis([mu]-trimethylsilanolato-[kappa]2O:O)-[(tetrahydrofuran-[kappa]O)lithium(I)]-[mu]-bromido]
PublicationThe title chain polymer compound, [GaLi2Br(C3H9OSi)4(C4H8O)2]n, was obtained in the reaction of GaBr3 with Me3SiOLi in toluene/tetrahydrofuran. The GaIII atom, located on a twofold rotation axis, is coordinated by four trimethylsilanolate ligands and has a distorted tetrahedral geometry. The LiI atom is four coordinated by one bridging Br atom located on an inversion centre, two trimethylsilanolate ligands and one tetrahydrofurane...
-
Trichloridobis(ethyldiphenylphosphine)-(tetrahydrofuran)molybdenum(III)
PublicationIn the mononuclear title compound, [MoCl3(C4H8O)(C14H15P)2], obtained by the reaction of trichlorotris(tetrahydrofuran)molybdenum(III) and ethyldiphenylphosphine in tetrahydrofuran (THF) solution, the MoIII atom is six-coordinated by one O atom of a THF molecule, two P atoms from two ethyldiphenylphosphine ligands and three Cl atoms in a distorted octahedral geometry. The C atoms of the THF molecule are disordered over two positions...
-
The Ellenbogen's "Matter as Software" Concept for Quantum Computer Implementation: III. Selection of X@C60 Molecular Building Blocks (MBBs) for Tip-Based Nanofabrication (TBN) of Trapped Neutral Atom Quantum Computing Devices
PublicationThe selection of guest atoms X of X@C60 MBBs for TBN of trapped neutral atom quantum computing devices is reported. Assuming the all-optical quantum computing as a final target stage, the two criteria are most important: the charge q accumulated on the C60 host must be as low as possible, and the atom X must have one or more available excited states within the band falling into the low energy window of neutral C60 molecule electronic...
-
Collision-induced luminescence spectra of pyridine bombarded by 1000 eV He+ cations
PublicationHere we show collision-induced luminescence spectra measured for collisions of the He+cations with thearomatic six-membered ring of the pyridine molecule (C5H5N). Distinct emission bands due to the CH(A2Δ→X2Πr;B2Σ+→X2Πr;C2Σ+→X2Πr), CN(B2Σ+→X2Σ+), C2(d3Πg→a3Πu), and NH(A3Π→X3Σ−) transitions, aswell as atomic H, He, and C lines have been observed. Apart from the He atoms, all the emitters arise from thefragmentation of the pyridine...
-
Electron collisions with cyanoacetylene HC3N : Vibrational excitation and dissociative electron attachment
PublicationWe experimentally probe electron collisions with HC3N in the energy range from 0 to 10 eV with the focus on vibrational excitation and dissociative electron attachment. The vibrational excitation cross sections show a number of resonances which are mode specific: the two dominant π∗ resonances are visible in the excitation of all the vibrational modes; however, broad σ ∗ resonances are visible only in certain bond-stretching vibrational...
-
GRAPHENE IN GAS CHEMIRESISTORS
PublicationGraphene has a range of unique physical properties which could be exploited in gas sensing. Every atom of graphene may be considered as a surface atom, able to interact even with single molecule of the target gas or vapour species resulting in the ultrasensitive sensor response. In this paper the potential of graphene as a nanomaterial for fabricating chemiresistors was described. Recent development in graphene sensors was considered...
-
Influence of S-Oxidation on Cytotoxic Activity of Oxathiole-Fused Chalcones
PublicationSynthesis, in vitro cytotoxic activity, and interaction with tubulin of oxidized, isomeric 1-(5-alkoxybenzo[d] [1,3]oxathiol-6-yl)-3-phenylprop-2-en-1-ones and 1-(6- alkoxybenzo[d][1,3]oxathiol-5-yl)-3-phenylprop-2-en-1- ones are described. Most of the compounds demonstrated cytotoxic activity at submicromolar concentrations. It was found that oxidation of sulfur atom of the oxathiole-fused chalcones strongly influenced activity...
-
Investigation of sensing mechanism of Nasicon electrocatalytic sensors in nitrogen dioxide and ammonia
PublicationIn this paper a sensing mechanism of Nasicon electrocatalytic sensor in nitrogen dioxide and ammonia is investigated. Both gases are environmentally hazardous and contain nitrogen atom in the molecule. However, it seems that their sensing mechanism in electrocatalytic sensor could be totally different. Namely, the maximum sensitivity for each gas was obtained at different temperatures. Also, different auxiliary layers are formed...
-
Dissociative photo-double-ionization of the isoxazole molecules
PublicationThe five-membered heterocyclic rings are incorporated into a wide variety of structures that play a vital role in many biochemical processes. In particular, the isoxazole molecule appears in many bioactive compounds due to its unique ring structure that consists of one oxygen atom and one nitrogen atom at adjacent positions. The unique atomic composition and bond arrangement of isoxazole imply its specific electronic properties...
-
Hydrogen migration in formation of NH(A3Π) radicals via superexcited states in photodissociation of isoxazole molecules
PublicationFormation of the excited NH(A 3Π) free radicals in the photodissociation of isoxazole (C3H3NO) molecules has been studied over the 14-22 eV energy range using photon-induced fluorescence spectroscopy. The NH(A 3Π) is produced through excitation of the isoxazole molecules into higher-lying superexcited states. Observation of the NH radical, which is not a structural unit of the isoxazole molecule, corroborates the hydrogen atom...
-
(R,R)-1-Acetyl-1'-(2,4,6-trinitrophenyl)-2,2'-bipyrrolidine
Publication(R,R)-1-Acetyl-1'-(2,4,6-trinitrophenyl)-2,2'-bipyrrolidine has been synthesized and its rentgenostructure has been determined. The structure of the title molecule, C16H19N5O7, is mainly determined by the steric effect of a bulky 2,4,6-trinitrophenyl group attached to the N atom of a pyrrolidine ring. Both pyrrolidine rings adopt an envelope conformation, with one of the methylene C atoms as the flap in each case, and the N-C-C-N...
-
Observation of the Hydrogen Migration in the Cation-Induced Fragmentation of the Pyridine Molecules
PublicationThe ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H+, H2+, He+, He2+, and...
-
Reactivity of triphosphinoboranes towards H3B·SMe2: access to derivatives of boraphosphacycloalkanes with diverse substituents
PublicationTriphosphinoboranes activated the B–H bond in the BH3 molecule without any catalysts at room temperature. Hydroboration reactions led to boraphosphacyloalkanes with diverse structures. The outcomes of reactions depend on the size of the phosphanyl substituent on the boron atom of the parent triphosphinoborane, where derivatives of boraphosphacyclobutane and boraphosphacyclohexane were obtained. Furthermore, the precursor of triphosphinoboranes,...
-
Dissociative electron attachment and anion-induced dimerization in pyruvic acid
PublicationWe report partial cross sections for the dissociative electron attachment to pyruvic acid. A rich fragmentation dynamics is observed. Electronic structure calculations facilitate the identification of complex rearrangement reactions that occur during the dissociation. Furthermore, a number of fragment anions produced at electron energies close to 0 eV are observed, that cannot originate from single electron-molecule collisions....
-
Electronic transition dipole moment functions of the first singlet Delta gerade and first triplet Delta ungerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Delta gerade (1sDg) and first triplet Delta ungerade (1tDu) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...
-
Electronic transition dipole moment functions of the second triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second triplet Sigma ungerade plus (2tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the second singlet Sigma ungerade plus and second triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Sigma ungerade plus (2sSu+) and second triplet Sigma gerade plus (2tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...
-
Electronic transition dipole moment functions of the third singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third singlet Sigma gerade plus (3sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first singlet Sigma ungerade plus and first triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Sigma ungerade plus (1sSu+) and first triplet Sigma gerade plus (1tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...
-
Electronic transition dipole moment functions of the third triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third triplet Sigma ungerade plus (3tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the fourth triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fourth triplet Sigma ungerade plus (4tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the fourth singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fourth singlet Sigma gerade plus (4sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first singlet Pi gerade and first triplet Pi gerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Pi gerade (1sPg) and first triplet Pi gerade (1tPg) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...
-
Electronic transition dipole moment functions of the second singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Sigma gerade plus (2sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the fifth singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fifth singlet Sigma gerade plus (5sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the third singlet Sigma ungerade plus and third triplet Sigma gerade plus states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the third singlet Sigma ungerade plus (3sSu+) and third triplet Sigma gerade plus (3tSg+) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs...
-
Electronic transition dipole moment functions of the second singlet Pi gerade and second triplet Pi gerade states of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the second singlet Pi gerade (2sPg) and second triplet Pi gerade (2tPg) states have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the four ETDMFs have been obtained...
-
Electronic transition dipole moment functions of the fifth triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the fifth triplet Sigma ungerade plus (5tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first singlet Sigma gerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first singlet Sigma gerade plus (1sSg+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Electronic transition dipole moment functions of the first triplet Sigma ungerade plus state of the Lithium dimer
Open Research DataElectronic transition dipole moment functions (ETDMF) of the first triplet Sigma ungerade plus (1tSu+) state have been calculated for the Lithium dimer. ETDMFs are needed in understanding processes like photodissociation, photoassociation, cooling, and trapping of molecules. The results of the five ETDMFs have been obtained by the nonrelativistic multireference...
-
Production of singlet oxygen atoms by photodissociation of oxywater
PublicationQuantum chemical calculations are reported for the energies of the few lowest electronic singlet states of oxywater along dissociation of the oxygen-oxygen bond into water and singlet oxygen using multistate multireference second-order Møller–Plesset perturbation theory. We compute an energy of 21 kcal/mol to remove one oxygen atom in the lowest singlet state. The two lowest excited singlet states have vertical excitation energies...
-
Electron-scattering cross sections for selected alkyne molecules: Measurements and calculations
PublicationWe report cross-section results from experimental and theoretical studies on electron collisions with 1-butyne (HC≡C–CH2CH3) and acetylene (HC≡CH) molecules and from computations for a propyne (HC≡C–CH3) molecule. Absolute grand -total electron-scattering cross sections (TCSs) were measured at impact energies ranging from about 0.5 to 300 eV using the linear electron-transmission method. The TCS energy curve for 1-butyne has a...