Filters
total: 3200
filtered: 347
-
Catalog
Chosen catalog filters
Search results for: meat authentication
-
Entrepreneurs' intention to use tax relief
Open Research DataThe dataset presents the results of research conducted by the author among Polish entrepreneurs in 2017–2020. The diagnostic survey method was used to collect primary data among enterprises from the SME sector. The measurement instrument was a survey questionnaire developed by the author. This study is a key piece of research. The aim was to examine...
-
Microstructure of barium-vanadate glasses
Open Research DataThe structure of barium-vanadate glasses was measured by SEM and XRD techniques. Samples of the composition of xBaO-(100-x)V2O5 where x= 30, 40 and 45 (in %mol) were prepared by the conventional melt quenching technique. Appropriate amounts of reagents: BaO (≥99.9%, P.P.H STANLAB Sp.J.) and V2O5 (≥99.9%, POCH) were thoroughly mixed in an agate mortar....
-
High temperature linear impedance of 35P2O5-30Fe2O3-27.5Nb2O5-7.5TiO2
Open Research DataThe high temperature electrical properties of phosphate-iron glasses containing niobium were investigated. Glass samples of the composition of 35P2O5-30Fe2O3-27.5Nb2O5-7.5TiO2 (in %mol) were prepared by the conventional melt quenching technique. Appropriate amounts of reagents ((NH4)2HPO4 (≥99.9%, POCH), Fe2O3 (≥99.9%, POCH), Nb2O5 (≥99.9%, PLUKA AG)...
-
High temperature linear impedance of 35P2O5-30Fe2O3-25Nb2O5-15TiO2
Open Research DataThe high temperature electrical properties of phosphate-iron glasses containing niobium and titanium were investigated. Glass samples of the composition of 35P2O5-30Fe2O3-20Nb2O5-15TiO2 (in %mol) were prepared by the conventional melt quenching technique. Appropriate amounts of reagents ((NH4)2HPO4 (≥99.9%, POCH), Fe2O3 (≥99.9%, POCH), Nb2O5 (≥99.9%,...
-
High temperature linear impedance of 35P2O5-30Fe2O3-35Nb2O5
Open Research DataThe high temperature electrical properties of phosphate-iron glasses containing niobium were investigated. Glass samples of the composition of 35P2O5-30Fe2O3-35Nb2O5 (in %mol) were prepared by the conventional melt quenching technique. Appropriate amounts of reagents ((NH4)2HPO4 (≥99.9%, POCH), Fe2O3 (≥99.9%, POCH), Nb2O5 (≥99.9%, PLUKA AG) and TiO2...
-
ECG measurement in the bathtub - drl on the outside of the bathtub on one side- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, drl behind the back - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at buttocks, strengthening 2x smaller, drl at buttocks - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the buttocks, drl at the feet - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - one side of the bathtub is grounded, drl outside the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the knees - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub, sitting motionless - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the knees, signal amplification x2 - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the buttocks, drills at the feet, grounding the bathtub - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub, placed on the back - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - sitting on the measuring electrodes, drl outside the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl on the outside of the bathtub on both sides, measuring electrodes on the front and back of the bathtub- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl in the water, measuring electrodes on the sides of the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl on one side of the bath mass on the other - the person is moving- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl outside the bathtub on both sides- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl in water, front and back measuring electrodes - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub, bath simulation - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - sitting on measuring electrodes, drl in water - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, drl at the buttocks - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl on one side of the bath, the mass of the system on the other- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - conversation during measurement, electrodes on the sides of the bathtub, drl in water - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - drl in the bathtub, electrodes on the sides of the bathtub - men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, drl at the knees - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes on the sides of the bathtub at the buttocks - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - electrodes at the feet, bath simulation - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement in the bathtub - buttocks electrodes, reinforcement 2x smaller, drl on knees - women
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
SYNAT_MUSIC_GENRE_FV_173
Open Research DataThis is the original dataset containing 51582 music tracks (22 music genres) and 173 element-feature vector [1-6,9]. A collection of more than 50000 music excerpts described with a set of descriptors obtained through the analysis of 30-second mp3 recordings was gathered in a database called SYNAT. The SYNAT database was realized by the Gdansk University...
-
ECG measurement in the bathtub - drl on one side of the bathtub, the other side of the bathtub is grounded and the system ground is grounded- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of water cooled materia
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of reference material materia (transverse direction)
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of reference material materia (longitudinal direction)
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - microstructure of naturally colled material
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - microstructure of water cooled material
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - microstructure of reference material
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Straightening of ship hull structure made of 316L stainless steel - tensile test of naturally cooled material
Open Research DataThe AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries,...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #24 - #25.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #24 (upper, rotating), #25 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #28 - #29.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #28 (upper, rotating), #29 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #30 - #31.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #30 (upper, rotating), #31 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #20 - #21.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #20 (upper, rotating), #21 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #22 - #23.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #22 (upper, rotating), #23 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #28 - #29.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #28 (upper, rotating), #29 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Specimen running-in. Prep. to sliding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specimen set #26 - #27.
Open Research DataSpecimen running-in procedure. Preparation to sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. Specimen set #26 (upper, rotating), #27 (lower, non-rotating)CZ_PRZYS.MAT - accelerometerMOM_TAR.MAT...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 4-8h.
Open Research DataWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer.Running time: 4-8h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21, #22-#23, #24-#25, #26-#27,...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 0-4h.
Open Research DataWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer.Running time: 0 - 4h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21, #22-#23, #24-#25, #26-#27,...
-
Angular welding distortion - one sided fillet weld
Open Research DataWelding is the basic method of joining ship hull elements during its construction. However, this method of joining structural elements generates shrinks. Shrinks causes deformation of the entire welded structure, both linear and angular. In the shipbuilding industry, there is a tendency to oversize fillet welds, at the design as well as manufacturing...