Publikacje
Filtry
wszystkich: 32
Katalog Publikacji
Rok 2020
-
Homoclinics for singular strong force Lagrangian systems
PublikacjaWe study the existence of homoclinic solutions for a class of generalized Lagrangian systems in the plane, with a C1-smooth potential with a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin.Under a strong force condition around the singular point ξ, via minimization of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions.
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublikacjaWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
Rok 2019
-
Subharmonic solutions for a class of Lagrangian systems
PublikacjaWe prove that second order Hamiltonian systems with a potential of class C1, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [P. H. Rabinowitz, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38]. Indeed, we weaken...
-
The Maslov index and the spectral flow—revisited
PublikacjaWe give an elementary proof of a celebrated theorem of Cappell, Lee and Miller which relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an associated path of self-adjoint first-order operators. We particularly pay attention to the continuity of the latter path of operators, where we consider the gap-metric on the set of all closed operators on a Hilbert space. Finally, we obtain from Cappell,...
Rok 2018
-
Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation
PublikacjaWe consider two-parameter bifurcation of equilibrium states of an elastic rod on a deformable foundation. Our main theorem shows that bifurcation occurs if and only if the linearization of our problem has nontrivial solutions. In fact our proof, based on the concept of the Brouwer degree, gives more, namely that from each bifurcation point there branches off a continuum of solutions.
Rok 2017
-
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems
PublikacjaWe study the existence of homoclinic type solutions for a class of inhomogenous Lagrangian systems with a potential satisfying the Ambrosetti-Rabinowitz superquadratic growth condition and a square integrable forcing term. A homoclinic type solution is obtained as a limit of periodic solutions of an approximative sequence of second order differential equations.
Rok 2015
-
Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
PublikacjaThe study of existence and multiplicity of solutions of differential equations possessing a variational nature is a problem of great meaning since most of them derives from mechanics and physics. In particular, this relates to Hamiltonian systems including Newtonian ones. During the past thirty years there has been a great deal of progress in the use of variational methods to find periodic, homoclinic and heteroclinic solutions...
-
On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
PublikacjaWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Karman equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations...
-
Subcritical bifurcation of free elastic shell of biological cluster
PublikacjaIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
Rok 2014
-
Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems
PublikacjaIn this work we will consider a class of second order perturbed Hamiltonian systems with a superquadratic growth condition on a time periodic potential and a small aperiodic forcing term. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system...
-
Symmetry-Breaking Bifurcation for Free Elastic Shell of Biological Cluster, Part 2
PublikacjaWe will be concerned with a two-dimensional mathematical model for a free elastic shell of biological cluster. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of the shell of biological cluster may be found as solutions of a certain nonlinear functional-differential equation with several physical parameters. For each multiparameter this...
-
Two families of infinitely many homoclinics for singular strong force Hamiltonian systems
PublikacjaWe are concerned with a planar autonomous Hamiltonian system with a potential possessing a single well of infinite depth at a point X and a unique strict global maximum 0 at a point A. Under a strong force condition around the singularity X, via minimization of an action integral and using a shadowing chain lemma together with simple geometrical arguments, we prove the existence of infinitely many geometrically distinct homoclinic...
Rok 2012
-
Connecting orbits for a periodically forced singular planar Newtonian system
PublikacjaW niniejszym artykule badamy problem istnienia i krotności rozwiązań homoklinicznych i heteroklinicznych dla nieautonomicznych układów Newtonowskich na płaszczyźnie z potencjałem okresowym ze względu na zmienną czasową, mającym maksimum globalne właściwe przyjmowane w dwóch punktach płaszczyzny i punkt osobliwy (studnię nieskończonej głębokości), w otoczeniu którego potencjał spełnia warunek Gordona (gradient potencjału ze względu...
-
Homoclinic orbits for a class of singular second order Hamiltonian systems in R3
PublikacjaW niniejszym artykule rozważamy autonomiczny układ Hamiltonowski w 3-wymiarowej przestrzeni euklidesowej, z potencjałem osiągającym maksimum globalne właściwe równe zero w początku układu współrzędnych i mającym za zbiór punktów osobliwych prostą, która nie przechodzi przez początek układu. Przy założeniu, że potencjał spełnia pewien warunek zwartości w nieskończoności i warunek Gordona w otoczeniu prostej punktów osobliwych, stosując...
-
Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3
PublikacjaWe consider a conservative second order Hamiltonian system \ddot{q}+ ∇V(q)=0 in R3 with a potential V having a global maximum at the origin and a line l ∩ {0} = ∅ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
-
The shadowing chain lemma for singular Hamiltonian systems involving strong forces
PublikacjaW niniejszym artykule rozważamy autonomiczny układ Hamiltonowski na płaszczyźnie z potencjałem, który ma punkt osobliwy (studnię nieskończonej głębokości) i maksimum globalne właściwe równe zero przyjmowane w dwóch różnych punktach płaszczyzny. Przy założeniu, że w otoczeniu punktu osobliwego potencjał spełnia warunek Gordona(gradient tego potencjału w otoczeniu punktu osobliwego jest tzw. silną siłą, ang. a strong force) dowodzimy...
-
Two almost homoclinic solutions for second-order perturbed Hamiltonian systems
PublikacjaW niniejszym artykule badamy problem istnienia rozwiązań prawie homoklinicznych (rozwiązań znikających w nieskończonościach) dla układów Hamiltonowskich drugiego rzędu (układów Newtonowskich) z zaburzeniem. Nasz wynik jest uogólnieniem twierdzenia Rabinowitza-Tanaki o istnieniu rozwiązania homoklinicznego dla układów bez zaburzenia [Math. Z. 206 (1991) 473-499]. O zaburzeniu zakładamy, że jest dostatecznie małe w przestrzeni funkcji...
Rok 2011
-
Almost homoclinic solutions for a certain class of mixed type functional differential equations
PublikacjaW pracy opisano pewną metodę aproksymacyjną szukania rozwiązań prawie homoklinicznych dla równań różniczkowo funkcyjnych z opóźnionym i przyśpieszonym argumentem. Podano również przykłady zastosowań tej metody.
-
Minimization of integral functionals in Sobolev spaces
PublikacjaPraca ma charakter przeglądowy i jest skierowana do młodych matematyków i doktorantów. Dotyczy problematyki omawianej przeze mnie na Zimowej Szkole Centrum Badań Nieliniowych im. J.P. Schaudera w Toruniu w roku 2009. Zawarłam w niej wybrane, znane wyniki dotyczące problemu minimalizacji funkcjonałów całkowych w przestrzeniach Sobolewa funkcji jednej zmiennej.
Rok 2010
-
Almost homoclinics for nonautonomous second order Hamiltonian systems by a variational approach
PublikacjaW artykule badamy problem istnienia rozwiązań prawie homoklinicznych dla nieautonomicznych układów Hamiltona w R^n z potencjałem V(t,x) postaci -1/2(L(t)x,x)+W(t,x) oraz zaburzeniem f(t) (ang. forcing term) z L^2. Zakładamy, że L jest funkcją ciągłą z prostej w zbiór macierzy kwadratowych nxn taką, że macierze L(t) są symetryczne i dodatnio określone jednostajnie względem zmiennej t. Potencjał W(t,x) jest klasy C^1 i nadkwadratowy...
-
Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential
PublikacjaW niniejszej pracy udowodniliśmy istnienie nietrywialnego rozwiązania homoklinicznego dla autonomicznych układów Hamiltona drugiego rzędu z nadkwadratowym potencjałem. Orbitę homokliniczną otrzymaliśmy jako słabą granicę ciągu punktów prawie krytycznych, stosując zasadę minimaks do odpowiedniego funkcjonału akcji oraz prosty argument typu ''concentration-compactness''.
-
The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in R^2
PublikacjaW niniejszej pracy badamy autonomiczne układy Hamiltona na płaszczyźnie z potencjałem, który ma punkt osobliwy x, globalne minimum równe zero osiągane w punktach a i b różnych od x oraz spełnia warunek typu Gordona w otoczeniu punktu osobliwego. Wykorzystując metody wariacyjne i pojęcie rotacji krzywej wykazaliśmy, że istnieją co najmniej dwa rozwiązania, które omijają punkt osobliwy i łączą {a,b} z {a,b}.
Rok 2009
-
An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems
PublikacjaW niniejszej pracy badamy istnienie rozwiązań prawie homoklinicznych (ang. almost homoclinic solutions) dla pewnej klasy układów Newtona. Rozwiązanie prawie homokliniczne otrzymujemy jako granicę ciągu rozwiązań okresowych dla pewnego ciągu równań różniczkowych.
Rok 2008
-
Almost homoclinic solutions for the second order Hamiltonian systems
PublikacjaW niniejszej pracy badam istnienie rozwiązań prawie homoklinicznych (almost homoclinic) dla układu Hamiltona rzędu drugiego (układu Newtona): ü(t) + V_{u}(t,u) = f(t), gdzie t є R, u є R^{n}, V(t,u) = -K(t,u) + W(t,u), K,W: R x R^{n} → R są klasy C^{1}, K spełnia warunek ''pinching'', W_{u}(t,u)=o(|u|), gdy |u| → 0 jednostajnie względem t, f: R → R^{n} jest funkcją ciągłą, niezerową i odpowiednio małą w L^{2}(R,R^{n}). Przy tych...
-
Multiple bifurcation in the solution set of the von Karman equations with S^{1}-symmetries
PublikacjaRozważmy cienką, sprężystą, kołową płytę, położoną na sprężystym podłożu, poddawaną działaniu sił ściskających koncentrycznie wzdłuż jej brzegu. Formy równowagi takiej płyty są rozwiązaniami równań von Karmana z dwoma parametrami określonych na dysku w R^{2}. Są to równania różniczkowe cząstkowe rzędu czwartego. Można je zapisać jako równanie operatorowe F(x,p)=0 w przestrzeniach Höldera, gdzie zmienna x odpowiada formom równowagi...
Rok 2007
-
Degree of T-equivariant maps in R^n
PublikacjaW pracy przedstawiona jest konstrukcja niezmienniczego stopnia topologicznego dla odwzorowań z symetriami działających na przestrzeni euklidesowej z inwolucją. Udowodnione jest twierdzenie, że dwa dopuszczalne i gradientowe odwzorowania niezmiennicze są niezmienniczo homotopijne wtedy i tylko wtedy, gdy są one homotopijne niezmienniczo i gradientowo.
-
Heteroclinic solutions for a class of the second order Hamiltonian systems
PublikacjaW pracy dowodzi się istnienia rozwiązań heteroklicznicznych dla pewnej klasy równań różniczkowych zwyczajnych drugiego rzędu typu hamiltonowskiego.
-
Homoclinic solutions for nonautonomous second order Hamiltonian
PublikacjaW pracy dowodzi się istnienia rozwiązań homoklinicznych dla pewnych typów równań różniczkowych zwyczajnych drugiego rzędu typu hamiltonowskiego.
Rok 2006
-
Description of the solution set of the von Karman equations for a circular plate in a small neighbourhood of a simple bifurcation point
PublikacjaW niniejszej pracy badamy równania von Karmana dla cienkiej, sprężystej, kołowej płyty na sprężystym podłożu, poddawanej działaniu sił ściskających wzdłuż brzegu. Są to równania różniczkowe cząstkowe IV rzędu. Stosując metody analizy nieliniowej, opisujemy zbiór rozwiązań równań von Karmana w małym otoczeniu jednokrotnego punktu bifurkacji.Badania były finansowane przez grant nr 1 P03A 042 29.
Rok 2005
-
Homoclinic solutions for a class of the second order Hamiltonian systems
PublikacjaW niniejszej pracy badamy istnienie orbit homoklinicznych dlaukładu Hamiltonowskiego drugiego rzędu: q^{..} + V_{q}(t,q) = f(t), gdzie V z iloczynu kartezjańskiego R x R^{n} do R jest postaciV(t,q) = -K(t,q) + W(t,q). Zakładamy, ze V jest T-okresowe ze względuna zmienną t, K spełnia tzw. ''pinching'' warunek, W jest superliniowew nieskończoności, a norma f w L^{2} jest wystarczająco mała.Orbitę homokliniczną takiego układu znajdujemy...
-
Stable and unstable bifurcation in the von Karman problem for a circular plate
PublikacjaW niniejszej pracy badamy równania von Karmana dla cienkiej, sprężystej, kołowej płyty, która znajduje się na sprężystym podłożu, pod działaniem sił ściskających wzdłuż swojego brzegu.Stosując metody analizy nieliniowej, dowodzimy istnienia stabilnychi niestabilnych punktów bifurkacji w zbiorze rozwiązań badanych równań.
Rok 2004
-
Local properties of the solution set of the operator equation in Banach spaces in a neighbourhood of a bifurcation point.
PublikacjaW niniejszej pracy badamy problem istnienia bifurkacji w zbiorze rozwiązań równania F(x,p)=0, gdzie F jest odwzorowaniem klasy C^2z iloczynu kartezjańskiego X i R^k do Y, X i Y są przestrzeniami Banacha takimi, że X jest podprzestrzenią liniową Y. Co więcej, dany jest iloczyn skalarny w Y, ciągły względem norm w X i Y. Pokazujemy, że pod pewnymi warunkami (0,p) jest punktem bifurkacji i opisujemyzbiór rozwiązań równania F(x,p)=0...