Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District - Publikacja - MOST Wiedzy

Wyszukiwarka

Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District

Abstrakt

The study was preceded to check the impact of the adopted digital elevation model resolution on the determination of catchment parameters and the further influence of the received information on calculations related to the hydrograph at the closing point of the basin after a synthetic 100-year precipitation episode. The study area are river basins located in the Puck commune convoying water directly to the Puck Bay. These studies allowed the formulation of the basic assumptions for the research project (in short called WaterPuck) supported by the National Centre for Research and Development.

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 40 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
E3S Web of Conferences nr 63, strony 1 - 5,
ISSN:
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kolerski T., Zima P., Kalinowska D., Wielgat P.: Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District// E3S Web of Conferences -Vol. 63, (2018), s.1-5
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1051/e3sconf/20186300005
Bibliografia: test
  1. D.R. Maidment, Handbook of hydrology, McGraw- Hill (1992) otwiera się w nowej karcie
  2. S. Eslamian, Handbook of engineering hydrology: fundamentals and applications, CRC Press, Taylor and Francis NY (2014) otwiera się w nowej karcie
  3. W. Szpakowski and M. Szydłowski, Evaluating the Catastrophic Rainfall of 14 July 2016 in the Catchment Basin of the Urbanized Strzyza Stream in Gdańsk, Polish Journal of Environmental Studies, 27, 2, pp. 861-869, (2018). DOI: 10.15244/pjoes/75962 otwiera się w nowej karcie
  4. M. Szydłowski, et al., Stormwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin, in Proc. of 14th International Symposium Water Management and Hydraulic Engineering WMHE 2015, pp. 141-150 (2015)
  5. P. Wielgat and P. Zima, Analysis of the impact of the planned sewage discharge from the 'North' Power Plant on the Vistula water quality, in Proc. of 16th International Multidisciplinary Scientific GeoConference SGEM 2016, book 3, vol. 3, pp. 19- 26 (2016). DOI: 10.5593/SGEM2016/HB33/S02.003 otwiera się w nowej karcie
  6. P. Zima, Modeling of the Two-Dimensional Flow Caused by Sea Conditions and Wind Stresses on the Example of Dead Vistula, Polish Maritime Research, 25, s1, pp. 166-171 (2018). DOI: 10.247/pomr-2018-0038 otwiera się w nowej karcie
  7. T. Kolerski, Modeling of ice phenomena in the mouth of the Vistula River, Acta Geophysica, 62, 893-914 (2014). DOI:10.2478/s11600-014-0213-x otwiera się w nowej karcie
  8. T. Kolerski, Ice cover progression due to flow regulation at the Wloclawek dam, Acta Scientiarum Polonorum. Formatio Circumiectus, 14, 229-240 (2015) otwiera się w nowej karcie
  9. J.G. Arnold, N. Fohrer, SWAT2000: Current capabilities and research opportunities in applied watershed modelling, Hydrological Processes, 19, 3, pp. 563-572, (2005). DOI: 10.1002/hyp.5611 otwiera się w nowej karcie
  10. J.G. Arnold, et al., Soil and Water Assessment Tool input/output file documentation: Version 2012, Texas Water Resources Institute, TR-439, (2012)
  11. R. Srinivasan, et al., Large area hydrologic modeling and assessment part II: model application, Journal of the American Water Resources Association, 34 (1), pp. 91-101, (1998). DOI: 10.1111/j.1752-1688.1998.tb05962.x otwiera się w nowej karcie
  12. T.K.Tesfa, et al., Extraction of hydrological proximity measures from DEMs using parallel processing, Environmental Modelling & Software, 26 (12), pp. 1696-1709, (2011). DOI: 10.1016/j.envsoft.2011. 07.018 otwiera się w nowej karcie
  13. J.P. Wilson, Digital terrain modeling, Geomorphology, 137, 1, pp. 107-121 (2012). DOI: 10.1016/j.geomorph.2011.03.012 otwiera się w nowej karcie
  14. Y.T. Dile, et al., Introducing a new open source GIS user interface for the SWAT model, Environmental Modelling & Software, 85, pp. 129-138 (2016). DOI: 10.1016/j.envsoft.2016.08.004 otwiera się w nowej karcie
  15. D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33, 2, pp. 309-319 (1997). DOI: 10.1029/ 96WR03137 otwiera się w nowej karcie
  16. K. Bobkowska, A. Inglot, M. Mikusova, P. Tysiąc, Implementation of Spatial Information for Monitoring and Analysis of the Area Around the Port Using Laser Scanning Techniques, Polish Maritime Research, 24, S1, pp. 10-15 (2017). DOI: 10.1515/pomr-2017-0015 otwiera się w nowej karcie
  17. K. Bobkowska, A. Janowski, J. Szulwic, 3D modelling of cylindrical-shaped objects from LiDAR data -an assessment based on theoretical modelling and experimental data, Metrology and Measurement Systems, Vol. 25, issue 1, pp. 47-56, 2018. DOI: 10.24425/118156 otwiera się w nowej karcie
  18. A. Inglot, P. Tysiąc, Airborne Laser Scanning Point Cloud Update by Used of the Terrestrial Laser Scanning and the Low-Level Aerial Photogrammetry, Proceedings -2017 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2017, pp. 34-38 (2017). DOI: 10.1109/ BGC.Geomatics.2017.75 otwiera się w nowej karcie
  19. J. Szulwic, P. Ziolkowski, A. Janowski, Combined Method of Surface Flow Measurement Using Terrestrial Laser Scanning and Synchronous Photogrammetry, Proceedings -2017 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2017, pp. 110-115 (2017). DOI: 10.1109/ BGC.Geomatics.2017.54
  20. D. Potrykus, et al., Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method, E3S Web of Conferences. 44, 00147 (2018). DOI 10.1051/ e3sconf/20184400147 otwiera się w nowej karcie
  21. Jr.A.T. Hjelmfelt, Investigation of curve number procedure, Journal of Hydraulic Engineering, 117, pp. 725-737 (1991). DOI: 10.1061/(ASCE)0733- 9429(1991)117:6(725) otwiera się w nowej karcie
  22. SCS: National Engineering Handbook, Section 4: Hydrology, Soil Conservation Service, USDA, Washington, D.C. (2004) otwiera się w nowej karcie
  23. K. Weinerowska-Bords, Development of Local IDF- formula Using Controlled Random Search Method for Global Optimization, Acta Geophysica, 63, 1, pp 232-274, (2015). DOI 10.2478/s11600-014-0242-5 otwiera się w nowej karcie
  24. W. A. Scharffenberg and M. J. Fleming, Hydrologic Modeling System HEC -HMS User's Manual (2010) otwiera się w nowej karcie
  25. HEC-HMS Technical Reference Manual, US Army Corps of Engineers Hydrologic Engineering Center, USA (2000)
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 123 razy

Publikacje, które mogą cię zainteresować

Meta Tagi