Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory - Publikacja - MOST Wiedzy

Wyszukiwarka

Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory

Abstrakt

In this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable shear deformation beam theory has been combined with Hamilton’s principle to develop the governing equations of the proposed model. The size-dependent behavior of the SWCNTs is addressed by Eringen’s nonlocal elasticity theory whereas the model is investigated analytically by employing Navier’s technique. Also, a parametric study has been conducted to analyze the effects of various scaling parameters such as small scale parameter, temperature change, thermal environments, Winkler modulus, and length of the beam. The results are also validated with previously published articles in special cases witnessing robust agreement.

Cytowania

  • 1 0

    CrossRef

  • 1 3

    Web of Science

  • 1 2

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 10 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 Informa UK Limited)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES strony 1 - 15,
ISSN: 1539-7734
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Jena S. K., Chakraverty S., Malikan M., Tornabene F.: Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory// MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES -, (2020), s.1-15
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/15397734.2020.1754239
Bibliografia: test
  1. Abualnour, M., A. Chikh, H. Hebali, A. Kaci, A. Tounsi, A. A. Bousahla, and A. Tounsi. 2019. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory. Computers and Concrete 24(6):489-498.
  2. Adim, B., T. H. Daouadji, B. Abbes, and A. Rabahi. 2016. Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory. Mechanics & Industry 17(5):512. otwiera się w nowej karcie
  3. Adim, B. and T. H. Daouadji. 2016. Effects of thickness stretching in FGM plates using a quasi- 3D higher order shear deformation theory. Advances in materials Research 5(4):223-244. otwiera się w nowej karcie
  4. Alimirzaei, S., M. Mohammadimehr, A. Tounsi. 2019. Nonlinear analysis of viscoelastic micro- composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Structural Engineering and Mechanics 71(5):485- 502.
  5. Arefi, Mohammad, and Amir Hossein Soltan Arani. 2018. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46(6):669-692. otwiera się w nowej karcie
  6. Bedia, W. A., M. S. Houari, A. Bessaim, A. A. Bousahla, A. Tounsi, T. Saeed, and M. S. Alhodaly. 2019. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams. Journal of Nano Research 57:175-191. otwiera się w nowej karcie
  7. Belbachir, N., K. Draich, A. A. Bousahla, M. Bourada, A. Tounsi, M. Mohammadimehr. 2019. Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings. Steel and Composite Structures, 33(1):81-92.
  8. Bensattalah, T., M. Zidour, T. H. Daouadji, and K. Bouakaz. 2019. Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix. Structural Engineering and Mechanics 70(3): 269- 277. otwiera się w nowej karcie
  9. Bensattalah, T., M. Zidour, and T. H. Daouadji. 2018. Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory. Advances in materials Research 7(3):163-174.
  10. Berghouti, H., E. A. Adda Bedia, A. Benkhedda, and A. Tounsi. 2019. Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Advances in nano research 7(5):351-364.
  11. Boutaleb, S., K. H. Benrahou, A. Bakora, A. Algarni, A. A. Bousahla, A. Tounsi, A. Tounsi, and S. R. Mahmoud. 2019. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Advances in nano research 7(3):191-208.
  12. Dastjerdi, S. and Y. Tadi Beni. 2019. A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines 1-26. otwiera się w nowej karcie
  13. Draoui, A., M. Zidour, A. Tounsi, and B. Adim. 2019. Static and Dynamic Behavior of Nanotubes- Reinforced Sandwich Plates Using (FSDT). Journal of Nano Research 57:117-135. otwiera się w nowej karcie
  14. Farshi, B., A. Assadi, and A. Alinia-Ziazi. 2010. Frequency analysis of nanotubes with consideration of surface effects. Applied Physics Letters 96:093105. otwiera się w nowej karcie
  15. Fattahi, A. M., S. Sahmani, and N. A. Ahmed. 2019. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mechanics Based Design of Structures and Machines 1-30. otwiera się w nowej karcie
  16. Ghavanloo, E., and S. A. Fazelzadeh. 2012. Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Applied Mathematical Modelling 36:4988-5000. otwiera się w nowej karcie
  17. Hussain, M., M. N. Naeem, A. Tounsi, and M. Taj. 2019. Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity. Advances in Nano Research 7(6):431- 442. otwiera się w nowej karcie
  18. Jena, S. K., and S. Chakraverty. 2019. Dynamic Behavior of Electro-Magnetic Nanobeam Using Haar Wavelet Method (HWM) and Higher Order Haar Wavelet Method (HOHWM). The European Physical Journal Plus 134(10):538. otwiera się w nowej karcie
  19. Jena, S. K., S. Chakraverty, and F. Tornabene. 2019a. Buckling Behavior of Nanobeam Placed in an Electro-Magnetic Field Using Shifted Chebyshev polynomials Based Rayleigh-Ritz Method. Nanomaterials 9(9): 1326. otwiera się w nowej karcie
  20. Jena, S. K., S. Chakraverty, and F. Tornabene. 2019b. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express 6(8): (085051)1-13. otwiera się w nowej karcie
  21. Jena, S. K., S. Chakraverty, and F. Tornabene. 2019c. Dynamical Behavior of Nanobeam Embedded in Constant, Linear, Parabolic and Sinusoidal Types of Winkler Elastic Foundation Using First-Order Nonlocal Strain Gradient Model. Materials Research Express 6(8): (0850f2)1-23. otwiera się w nowej karcie
  22. Jena, S. K., S. Chakraverty, and R. M. Jena. 2019. Propagation of Uncertainty in Free Vibration of Euler-Bernoulli Nanobeam. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(10): 436. otwiera się w nowej karcie
  23. Jena, S. K., S. Chakraverty, and M. Malikan. 2019. Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Engineering with Computers doi.org/10.1007/s00366-019-00883-1. otwiera się w nowej karcie
  24. Jena, S. K., S. Chakraverty, M. Malikan, and F. Tornabene. 2019. Stability analysis of single- walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory. Mechanics Based Design of Structures and Machines, An International Journal doi.org/10.1080/15397734.2019.1698437. otwiera się w nowej karcie
  25. Jena, S. K., S. Chakraverty, and M. Malikan. 2020a. Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach. European Physical Journal Plus 135(2):1-18. otwiera się w nowej karcie
  26. Jena, S. K., S. Chakraverty, and M. Malikan. 2020b. Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Engineering with Computers 1-13. otwiera się w nowej karcie
  27. Jena, S. K., and S. Chakraverty. 2018. Free vibration analysis of Euler-Bernoulli Nano beam using differential transform method. International Journal of Computational Materials Science and Engineering 7:1850020. otwiera się w nowej karcie
  28. Jiang, J., L. Wang, and Y. Zhang. 2017. Vibration of Single-Walled Carbon Nanotubes with Elastic Boundary Conditions. International Journal of Mechanical Sciences 122:156-166. otwiera się w nowej karcie
  29. Karami, B., M. Janghorban, A. Tounsi. 2019a. On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model. Structural Engineering and Mechanics, 69(5):487-497. otwiera się w nowej karcie
  30. Karami, B., M. Janghorban, A. Tounsi. 2019b. Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation. Structural Engineering and Mechanics 70(1): 55-66. otwiera się w nowej karcie
  31. Karami, B., M. Janghorban, and A. Tounsi. 2019c. Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Engineering with Computers 35(4):1297-316. otwiera się w nowej karcie
  32. Karami, B., D. Shahsavari, M. Janghorban, A. Tounsi. 2019. Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. International Journal of Mechanical Sciences 156:94-105. otwiera się w nowej karcie
  33. Larbi, L.O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41(4):421-433. otwiera się w nowej karcie
  34. Lee, H. L., and W. J. Chang. 2010. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Journal of Applied Physics 108:093503. otwiera się w nowej karcie
  35. Mahmoudi, A., S. Benyoucef, A. Tounsi, A. Benachour, E. A. Adda Bedia, and S. R. Mahmoud. 2019. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. Journal of Sandwich Structures & Materials 21(6):1906-29. otwiera się w nowej karcie
  36. Malikan, M., V. B. Nguyen, and F. Tornabene. 2018. Damped forced vibration analysis of single- walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal 21:778-786. otwiera się w nowej karcie
  37. Malikan, M. 2019. On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory. Journal of Applied and Computational Mechanics 5 :103-112. otwiera się w nowej karcie
  38. Malikan, M., R. Dimitri, and F. Tornabene. 2019. Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering 158:198-205. otwiera się w nowej karcie
  39. Malikan, M. and V. A. Eremeyev. 2020. Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method. Materials Research Express. https://doi.org/10.1088/2053-1591/ab691c otwiera się w nowej karcie
  40. Malikan, M., M. Krasheninnikov, and V. A. Eremeyev. 2020. Torsional stability capacity of a nano- composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. International Journal of Engineering Science 148:103210. otwiera się w nowej karcie
  41. Medani, M., A. Benahmed, M. Zidour, H. Heireche, A. Tounsi, A. A. Bousahla, A. Tounsi, and S. R. Mahmoud. 2019. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel and Composite Structures 32(5):595-610.
  42. Murmu, T., and S. C. Pradhan. 2010. Thermal effects on the stability of embedded carbon nanotubes. Computational Materials Science 47:721-7. otwiera się w nowej karcie
  43. Reddy, J.N. 2007. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science 45:288-307. otwiera się w nowej karcie
  44. Semmah, A., H. Heireche, A. A. Bousahla, and A. Tounsi. 2019. Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT. Advances in nano research 7(2):89-98.
  45. Tlidji, Y., M. Zidour, K. Draiche, A. Safa, M. Bourada, A. Tounsi, A. A. Bousahla, S. R. Mahmoud. 2019. Vibration analysis of different material distributions of functionally graded microbeam. Structural Engineering and Mechanics 69(6):637-649.
  46. Zarga, D., A. Tounsi, A. A. Bousahla, F. Bouradaand, S. R. Mahmoud. 2019. Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel and Composite Structures 32(3):389-410.
  47. Zhang, M., and J. Li. 2009. Carbon nanotube in different shapes. Materials today 12:12-18. otwiera się w nowej karcie
  48. Zhen, Y. X. 2017. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects. Physica E: Low-dimensional Systems and Nanostructures 86:275-279. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 13 razy

Publikacje, które mogą cię zainteresować

Meta Tagi