Filtry
wszystkich: 161
wybranych: 154
Wyniki wyszukiwania dla: ZEROS AND POLES OF COMPLEX FUNCTION
-
Automated Design of Linear Phase Filters
PublikacjaThis paper presents a fast technique for an automated design of microwave filters with linear phase. The proposed method exploits the cost function defined using the location of complex zeros and poles of the filter’s transfer and reflection function. The effectiveness of the proposed technique is presented with two illustrative examples.
-
Global Roots and Poles Finding Algorithm on Quantum Computer
PublikacjaIn this paper, the implementation of the global roots and poles finding algorithm for a complex-valued function of a complex variable on a quantum computer, which allows for solving general nonlinear algebraic equations, is presented. The considered function is sampled with the use of Delaunay’s triangulation on the complex plane and a phase quadrant, in which the value of the function is located, is computed on a classical computer...
-
Substrate-integrated waveguide (SIW) filter design using space mapping
PublikacjaIn this paper, we present a fast technique for an automated design of microwave filters in substrate integrated wave (SIW) technology. The proposed methodology combines the space mapping technique with a cost function defined using the location of complex zeros and poles of filter’s transfer and reflection function and uses a rectangular waveguide as a surrogate model. The effectiveness of the proposed technique is presented with...
-
Testing Stability of Digital Filters Using Optimization Methods with Phase Analysis
PublikacjaIn this paper, novel methods for the evaluation of digital-filter stability are investigated. The methods are based on phase analysis of a complex function in the characteristic equation of a digital filter. It allows for evaluating stability when a characteristic equation is not based on a polynomial. The operation of these methods relies on sampling the unit circle on the complex plane and extracting the phase quadrant of a function...
-
Zero-Pole Approach in Microwave Passive Circuit Design
PublikacjaIn this thesis, optimization strategies for design of microwave passive structures including filters, couplers, antenna and impedance transformer and construction of various surroogate models utilized to fasten the design proces have been discussed. Direct and hybrid optimization methodologies including space mapping and multilevel algorithms combined with various surrogate models at different levels of fidelity have been utilized...
-
Zero-pole approach to computer aided design of in-line siw filters with transmission zeros
PublikacjaThis paper presents a design of a new type of in-line pseudo-elliptic filters implemented in substrate integrated waveguide(SIW) technology. To realize transmission zeros in in-line topology,frequency-dependent couplings were used. Such dispersive couplingswere implemented as shorted stubs. The design process startswith the generation of a suitable starting point. To this end, anapproximation of SIW as a rectangular waveguide is...
-
Inline Waveguide Filter With Compact Frequency-Dependent Coupling Producing Two Additional Poles and Three Transmission Zeros
PublikacjaThis work reports a compact frequency-dependent coupling (FDC) structure introduced in a rectangular waveguide, which allows to generate two additional in-band transmission poles and three transmission zeros (TZs). This serves to increase the order/selectivity of the waveguide bandpass filter in a compact inline topology, thus without the need for any additional space/volume or cross coupling. The proposed FDC consists of a partial-height...
-
Zero-Pole Space Mapping for CAD of Filters
PublikacjaIn this paper, we propose a new space-mapping technique tailored to the CAD of microwave filters. The goal of space mapping is to achieve a satisfactory design with the minimal number of fine model evaluations. In our approach, the filter is represented by a rational function. To quickly align the coarse and fine models, and to speed up the direct optimization of the coarse model, we propose matching the zeros and poles of a rational...
-
Zero-Pole Electromagnetic Optimization
PublikacjaA fast technique for the full-wave optimization of transmission or reflection properties of general linear timeinvariant high-frequency components is proposed. The method is based on the zeros and poles of the rational function representing the scattering parameters of the device being designed and it is the generalization of the technique developed for the design by optimization of microwave filters. The performance of the proposed...
-
Comparison of Compact Reduced Basis Method with Different Model Order Reduction Techniques
PublikacjaDifferent strategies suitable to compare the performance of different model order reduction techniques for fast frequency sweep in finite element analysis in Electromagnetics are proposed and studied in this work. A Frobenius norm error measure is used to describe how good job a reduced-order model is doing with respect to the true system response. In addition, the transfer function correct behavior is monitored by studying the...
-
Inline Microstrip Bandpass Filter With Two Transmission Zeros and Increased Order Using Spurious Resonance of Frequency-Dependent Inverter
PublikacjaA design method for a class of fourth-order inline microstrip bandpass filter with two transmission zeros and 20% fractional bandwidth is presented. The filter consists of two quarter-wavelength transmission-line resonators coupled by a frequency-dependent inverter. The inverter is composed of two open-ended stubs that are connected by an interdigital capacitor and introduces two poles and two transmission zeros in the filter response....
-
Synthesis of coupled lossy resonator filters.
PublikacjaA technique for fast synthesis of coupling matrix low-pass prototypes of generalized. Chebyshev bandpass filters with lossy resonators is presented in this letter. The coupling matrix is found by solving a nonlinear least squares problem based on zeros and poles of filter's transfer functions.
-
Fast Full-Wave Multilevel Zero-Pole Optimization of Microwave Filters
PublikacjaA new concept is proposed for the full-wave computer-aided design of microwave filters. The method consists of two stages and operates on the zeros and poles of the transfer function and their derivatives. These quantities are evaluated from the response computed by a full-wave electromagnetic solver with two levels of accuracy. The two stages make use of different models that are optimized using a low-accuracy electromagnetic...
-
Low-Cost Surrogate Models for Microwave Filters
PublikacjaA novel low-cost kriging-based multivariable parametric macromodeling technique for microwave filters is presented. Kriging is used to model both the residues and poles of a microwave filter's reflection coefficient, and the zeros of the transmission coefficient. The proposed residue-pole-zero (RPZ) technique is demonstrated to efficiently model a high dimensional (8D) microwave filter with pseudoelliptic characteristics.
-
On the synthesis of coupled-lossy resonator filters with unloaded quality factor control
PublikacjaA technique for fast synthesis of coupling matrix low-pass prototypes of generalized Chebyshev bandpass filters with lossy resonators is presented in this paper. The coupling matrix is found by solving a nonlinear least squares problem based on zeros and poles of filter's transfer functions. Additional constraints are introduced that allow one to control the level of unloaded quality factor of resonators.
-
Inverse Nonlinear Eigenvalue Problem Framework for the Synthesis of Coupled-Resonator Filters With Nonresonant Nodes and Arbitrary Frequency-Variant Reactive Couplings
PublikacjaA novel, general circuit-level description of coupledresonator microwave filters is introduced in this article. Unlike well-established coupling-matrix models based on frequency-invariant couplings or linear frequency-variant couplings (LFVCs), a model with arbitrary reactive frequencyvariant coupling (AFVC) networks is proposed. The engineered formulation is more general than prior-art ones—with the only restriction that the coupling...
-
Dimensional Synthesis of Coupled-Resonator Pseudoelliptic Microwave Bandpass Filters with Constant and Dispersive Couplings
PublikacjaIn this paper, we propose a novel technique for the dimensional synthesis of coupled-resonator pseudoelliptic microwave filters with constant and dispersive couplings. The proposed technique is based on numerical simulations of small structures, involving up to two adjacent resonators, and it accounts for a loading effect from other resonators by replacing them with terminations coupled through appropriately scaled inverters. The...
-
Miniaturized Dual-Band Bandpass Filter with Wide Inter Stopband for 5G Applications
PublikacjaThis article presents the design of a miniaturized dual-band bandpass filter with a wide inter-stopband and improved isolation. A novel topology comprising the series connection of shunt cascaded coupled lines and quarter-wavelength open stubs is proposed to realize the dual-band filter along with half-wavelength stepped-impedance stubs. The circuit characteristics contain nine transmission zeros and four poles. The transmission...
-
An MOR Algorithm Based on the Immittance Zero and Pole Eigenvectors for Fast FEM Simulations of Two-Port Microwave Structures
PublikacjaThe aim of this article is to present a novel model-order reduction (MOR) algorithm for fast finite-element frequency-domain simulations of microwave two-port structures. The projection basis used to construct the reduced-order model (ROM) comprises two sets: singular vectors and regular vectors. The first set is composed of the eigenvectors associated with the poles of the finite-element method (FEM) state-space system, while...
-
A Novel Synthesis Technique for Microwave Bandpass Filters with Frequency-Dependent Couplings
PublikacjaThis paper presents a novel synthesis technique for microwave bandpass filters with frequency-dependent couplings. The proposed method is based on the systematic extraction of a dispersive coupling coefficient using an optimization technique based on the zeros and poles of scattering parameters representing two coupled resonators.The application of this method of synthesis is illustrated using two examples involving four and five-pole...
-
Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise
PublikacjaThis paper discusses the design and application of iterative learning control (ILC) and repetitive control (RC) for high modal density systems. Typical examples of these systems are structural and acoustical systems considered in active structural acoustic control (ASAC) and active noise control (ANC) applications. The application of traditional ILC and RC design techniques, which are based on a parametric system model, on systems...
-
Highly-Compact Dual-Band Bandpass Waveguide Filter Based on Cross-Shaped Frequency-Dependent Coupling
PublikacjaThis work reports the design of an original class of highly-compact dual-band bandpass filter based on dual-mode waveguide resonators inter-coupled through a novel type of frequency-dependent coupling (FDC). The devised FDC consists of a cross-shaped metallic structure placed in the broad wall of a rectangular waveguide. This FDC produces two additional poles and three extra transmission zeros (TZs). Specifically, each pole is...
-
Global Complex Roots and Poles Finding Algorithm in C × R Domain
PublikacjaAn algorithm to find the roots and poles of a complex function depending on two arguments (one complex and one real) is proposed. Such problems are common in many fields of science for instance in electromagnetism, acoustics, stability analyses, spectroscopy, optics, and elementary particle physics. The proposed technique belongs to the class of global algorithms, gives a full picture of solutions in a fixed region ⊂ C × R and...
-
Self-Adaptive Mesh Generator for Global Complex Roots and Poles Finding Algorithm
PublikacjaIn any global method of searching for roots and poles, increasing the number of samples increases the chances of finding them precisely in a given area. However, the global complex roots and poles finding algorithm (GRPF) (as one of the few) has direct control over the accuracy of the results. In addition, this algorithm has a simple condition for finding all roots and poles in a given area: it only requires a sufficiently dense...
-
Global Complex Roots and Poles Finding Algorithm Based on Phase Analysis for Propagation and Radiation Problems
PublikacjaA flexible and effective algorithm for complex roots and poles finding is presented. A wide class of analytic functions can be analyzed, and any arbitrarily shaped search region can be considered. The method is very simple and intuitive. It is based on sampling a function at the nodes of a regular mesh, and on the analysis of the function phase. As a result, a set of candidate regions is created and then the roots/poles are verified...
-
An Improvement of Global Complex Roots and Poles Finding Algorithm for Propagation and Radiation Problems
PublikacjaAn improvement of the recently developed global roots finding algorithm has been proposed. The modification allows to shorten the computational time by reducing the number of function calls. Moreover, both versions of the algorithms (standard and modified) have been tested for numerically defined functions obtained from spectral domain approach and field matching method. The tests have been performed for three simple microwave...
-
Analysis of nonlinear eigenvalue problems for guides and resonators in microwave and terahertz technology
PublikacjaThis dissertation presents developed numerical tools for investigating waveguides and resonators' properties for microwave and terahertz technology. The electromagnetics analysis requires solving complex eigenvalue problems, representing various parameters such as resonant frequency or propagation coefficient. Solving equations with eigenvalue boils down to finding the roots of the determinant of the matrix. At the beginning, one...
-
Multimodal Genetic Algorithm with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublikacjaIn this contribution, a new genetic-algorithm-based method of finding roots and poles of a complex function of a complex variable is presented. The algorithm employs the phase analysis of the function to explore the complex plane with the use of the genetic algorithm. Hence, the candidate regions of root and pole occurrences are selected and verified with the use of discrete Cauchy's argument principle. The algorithm is evaluated...
-
Zespół mieszkaniowo-usługowy ZUS przy ul. Partyzantów w Gdyni, jako przykład nowoczesnego zintegrowania funkcji i formy = / ZUS residential and service complex in Partyzantów St. in Gdynia as an example of modern integration of form and function
PublikacjaArtykuł dotyczy zespołu zabudowy, który powstał w Gdyni pod koniec lat 30. XX w. Ukończenie założenia przerwał wybuch II wojny, ale pomimo tego zrealizowana część dowodzi, że zastosowane rozwiązania przestrzenne i funkcjonalne należały do najnowocześniejszych w ówczesnej Polsce.
-
Complex Root Finding Algorithm Based on Delaunay Triangulation
PublikacjaA simple and flexible algorithm for finding zeros of a complex function is presented. An arbitrary-shaped search region can be considered and a very wide class of functions can be analyzed, including those containing singular points or even branch cuts. The proposed technique is based on sampling the function at nodes of a regular or a self-adaptive mesh and on the analysis of the function sign changes. As a result, a set of candidate points...
-
Numerical Test for Stability Evaluation of Discrete-Time Systems
PublikacjaIn this paper, a new numerical test for stability evaluation of discrete-time systems is presented. It is based on modern root-finding techniques at the complex plane employing the Delaunay triangulation and Cauchy's Argument Principle. The method evaluates if a system is stable and returns possible values and multiplicities of unstable zeros of the characteristic equation. For state-space discrete-time models, the developed test...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublikacjaIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
Testing Stability of Digital Filters Using Multimodal Particle Swarm Optimization with Phase Analysis
PublikacjaIn this paper, a novel meta-heuristic method for evaluation of digital filter stability is presented. The proposed method is very general because it allows one to evaluate stability of systems whose characteristic equations are not based on polynomials. The method combines an efficient evolutionary algorithm represented by the particle swarm optimization and the phase analysis of a complex function in the characteristic equation....
-
Stability analysis of interconnected discrete-time fractional-order LTI state-space systems
PublikacjaIn this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation must be within the unit circle on the complex z-plane. The obtained...
-
A Novel Coupling Matrix Synthesis Technique for Generalized Chebyshev Filters With Resonant Source–Load Connection
PublikacjaThis paper reports a novel synthesis method for microwave bandpass filters with resonant source–load connection. In effect, a network realizing N+1 transmission zeros (where N is the number of reflection zeros) is obtained. The method is based on a prototype transversal coupling matrix (N+2, N+2) with source and load connected by a resonant circuit formed by a capacitor in parallel with a frequency-invariant susceptance. To complement...
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublikacjaThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
A New Approach to Stability Evaluation of Digital Filters
PublikacjaIn this paper, a new numerical method of evaluating digital filter stability is presented. This approach is based on novel root-finding algorithms at the complex plane using the Delaunay triangulation and Cauchy's Argument Principle. The presented algorithm locates unstable zeros of the characteristic equation with their multiplicities. The proposed method is generic and can be applied to a vast range of systems. Verification of...
-
A Subspace-Splitting Moment-Matching Model-Order Reduction Technique for Fast Wideband FEM Simulations of Microwave Structures
PublikacjaThis article describes a novel model-order reduction (MOR) approach for efficient wide frequency band finite-element method (FEM) simulations of microwave components. It relies on the splitting of the system transfer function into two components: a singular one that accounts for the in-band system poles and a regular part that has no in-band poles. In order to perform this splitting during the reduction process, the projection...
-
Regularized Local Multivariate Reduced-Order Models With Nonaffine Parameter Dependence
PublikacjaThis paper addresses a singular problem, not yet discussed in the literature, which occurs when parametric reduced-order models are created using a subspace projection approach with multiple concatenated projection bases. We show that this technique may lead to the appearance of localized artifacts in the frequency characteristics of a system, even when the reduced-order projection basis is rich enough to describe the original...
-
A Substrate Integrated Waveguide (SIW) Bandpass Filter in A Box Configuration With Frequency-Dependent Coupling
PublikacjaThis letter presents the design of a microwave bandpass filter with frequency-dependent coupling implemented in substrate integrated waveguide (SIW) technology. The proposed filter implements a four-pole generalized Chebyshev filtering function with two transmission zeros. Resonators are arranged in an extended box configuration with dispersive coupling on a main signal path, which produces an extra zero in comparison to classical...
-
On root finding algorithms for complex functions with branch cuts
PublikacjaA simple and versatile method is presented, which enhances the complex root finding process by eliminating branch cuts and branch points in the analyzed domain. For any complex function defined by a finite number of Riemann sheets, a pointwise product of all the surfaces can be obtained. Such single-valued function is free of discontinuity caused by branch cuts and branch points. The roots of the new function are the same as the...
-
Numerical Method for Stability Testing of Fractional Exponential Delay Systems
PublikacjaA numerical method for stability testing of fractional exponential systems including delays is presented in this contribution. We propose the numerical test of stability for a very general class of systems with a transfer function, which includes polynomials and exponentials of fractional powers of the Laplace variable s combined with delay terms. Such a system is unstable if any root of its characteristic equation, which usually...
-
A Linear Phase Filter in Quadruplet Topology With Frequency-Dependent Couplings
PublikacjaThis letter presents a design of a linear phase microwave bandpass filter. The filter is composed of four resonators arranged in the quadruplet topology. Making the cross and one direct coupling dispersive gives additional design flexibility. The first advantage of using frequency-dependent couplings is the possibility to chose an arbitrary location of a pair of complex transmission zeros (TZs) in the s-domain. The second one is...
-
Dispersive Delay Structures With Asymmetric Arbitrary Group-Delay Response Using Coupled-Resonator Networks With Frequency-Variant Couplings
PublikacjaThis article reports the design of coupled-resonatorbased microwave dispersive delay structures (DDSs) with arbitrary asymmetric-type group delay response. The design process exploits a coupling matrix representation of the DDS circuit as a network of resonators with frequency-variant couplings (FVCs). The group delay response is shaped using complex transmission zeros (TZs) created by dispersive cross-couplings. We also present an...
-
RESIDENTIAL FUNCTION IN MULTI-CRITERIA MULTIFUNCTIONAL BUILDING SYSTEM DESIGN PROCESS
PublikacjaThe paper presents the multi-criteria approach in the design process of residential structure as a part of a multifunctional building system. The purpose of work was to broaden the field of multifunctional building system design process. Background for the presented work is to define the direction of architectural growth of the modern city center area where actually are built complex and large capacity structures with a great impact...
-
Wykorzystanie algorytmów ewolucyjnych do doboru wzmocnień rozszerzonego obserwatora prędkości maszyny indukcyjnej
PublikacjaW pracy opisano sposób doboru wzmocnień rozszerzonego obserwatora prędkości maszyny indukcyjnej przy wykorzystaniu algorytmów ewolucyjnych. Zaproponowano funkcję celu opartą na rozkładzie biegunów obserwatora. Ze względu na wpływ prędkości maszyny na dynamikę obserwatora zaproponowano dobór wzmocnień obserwatora dla różnych przedziałów prędkości. Dla poszczególnych przedziałów zaprezentowano wyniki doboru wzmocnień w postaci tabel...
-
A Universal Gains Selection Method for Speed Observers of Induction Machine
PublikacjaProperties of state observers depend on proper gains selection. Each method of state estimation may require the implementation of specific techniques of finding those gains. The aim of this study is to propose a universal method of automatic gains selection and perform its verification on an induction machine speed observer. The method utilizes a genetic algorithm with fitness function which is directly based on the impulse response...
-
A high-accuracy method of computation of x-ray waves propagation through an optical system consisting of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated...
-
Inline Waveguide Filter With Transmission Zeros Using a Modified-T-Shaped-Post Coupling Inverter
PublikacjaThis letter reports the design techniques for a class 2 of inline waveguide bandpass filters with sharp-rejection capabil3 ities at the lower stopband based on a novel nonlinear-frequency4 variant-coupling (NFVC) structure. The proposed NFVC consists 5 of a modified-T-shaped metallic post (MTP) that is placed at the 6 center of the waveguide broad wall with its open arms lying 7 along the waveguide width. The engineered NFVC structure 8...
-
Computational algorithm for the analysis of mechatronic systems with distributed parameter elements
PublikacjaThe paper presents a systematic computational package for analysis of complex systems composed of multiple lumped and distributed parameter subsystems. The algorithm is based on the transfer function method (DTFM). With this algorithm, a bond graph technique for the modelling is developed to simplify computations. Analysis of different systems requires only changing the inputs data in the form of the bond graph diagram