Wyniki wyszukiwania dla: deep learning, robotics - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: deep learning, robotics

Wyniki wyszukiwania dla: deep learning, robotics

  • Michał Grochowski dr hab. inż.

    Professor and a  Head  of  the  Department  of  Intelligent Control and Decision Support Systems at  Gdansk  University  of  Technology (GUT). He is also a Member  of the Board of the Digital Technologies  Center  of  GUT.  He received  his M.Sc. degree in Control Engineering  in  2000  from  the  Electrical  and  Control Engineering Faculty at the GUT. In 2004 he received a Ph.D. degree in Automatic Control and Robotics from this...

  • Deep neural networks for data analysis 24/25

    Kursy Online
    • J. Cychnerski
    • K. Draszawka

    This course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...

  • Olgun Aydin Dr

    Osoby

    Olgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...

  • Deep neural networks for data analysis

    Kursy Online
    • K. Draszawka

    The aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...

  • Phong B. Dao D.Sc., Ph.D.

    Osoby

    Phong B. Dao received the Engineer degree in Cybernetics in 2001, the M.Sc. degree in Instrumentation and Control in 2004, both from Hanoi University of Science and Technology in Vietnam, and the Ph.D. degree in Control Engineering in 2011 from the University of Twente, the Netherlands. In May 2020, Dr. Dao received the degree of D.Sc. (Habilitation) in Mechanical Engineering from the AGH University of Science and Technology, Poland....

  • Efkleidis Katsaros

    Osoby

    Efklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...

  • Podstawy uczenia głębokiego 2022

    Kursy Online
    • K. Draszawka
    • S. Olewniczak
    • J. Szymański

    {mlang pl}Kurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka.{mlang} {mlang en}This is a course about deep learning basics dedicated for Computer Science students.{mlang}

  • Agnieszka Mikołajczyk-Bareła dr inż.

    Osoby

  • Jacek Rumiński prof. dr hab. inż.

    Wykształcenie i kariera zawodowa 2022 2016   2002   1995   1991-1995 Tytuł profesora Habilitacja   Doktor nauk technicznych   Magister inżynier     Prezydent RP, dziedzina nauk inżynieryjno-technicznych, dyscyplina: inzyniera biomedyczna Politechnika Gdańska, Biocybernetyka i inżyniera biomedyczna, tematyka: „Metody wyodrębniania sygnałów i parametrów z różnomodalnych sekwencji obrazów dla potrzeb diagnostyki i wspomagania...

  • Hossein Nejatbakhsh Esfahani Dr.

    Osoby

    My research interests lie primarily in the area of Learning-based Safety-Critical Control Systems, for which I leverage the following concepts and tools:-Robust/Optimal Control-Reinforcement Learning-Model Predictive Control-Data-Driven Control-Control Barrier Function-Risk-Averse Controland with applications to:-Aerial and Marine robotics (fixed-wing UAVs, autonomous ships and underwater vehicles)-Multi-Robot and Networked Control...

  • Abdalraheem Ijjeh Ph.D. Eng.

    Osoby

    The primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.  

  • Muhammad Usman PhD

    Osoby

    Muhammad Usman is currently a Computer Vision Researcher at Gdansk University of Technology, working on the BE-LIGHT project, where his research focuses on advancing biomedical diagnostics through the integration of light-based technologies and machine learning techniques. He has completed his Master’s degree in Control Science and Engineering from the University of Science and Technology of China (USTC), Hefei, China. His research...

  • SegSperm - a dataset of sperm images for blurry and small object segmentation

    Dane Badawcze

    Many deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.

  • Spotkanie politechnicznego klubu sztucznej inteligencji

    Wydarzenia

    24-10-2019 17:30 - 24-10-2019 19:15

    Pierwsze w tym roku akademickim spotkanie klubu AI Bay – Zatoka Sztucznej Inteligencji, który działa na Politechnice Gdańskiej odbędzie się w Gmachu B Wydziału Elektroniki, Telekomunikacji i Informatyki (Audytorium 1P).

  • Muhammad Usman PhD

    Osoby

    Muhammad Usman is a researcher at the Gdansk University of Technology, currently working on the BE-Light project focused on face skin analysis using multimodal imaging and machine learning methods. He previously worked as a Hardware Test Engineer at Apple Inc., specializing in the rigorous testing and validation of electronic systems, ensuring reliability and performance. He holds a Master of Science in Automation and Control from...

  • WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE

    Publikacja

    W niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...

  • Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu

    Publikacja

    - Rok 2023

    Rozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...

    Pełny tekst do pobrania w portalu

  • Międzynarodowa Szkoła Letnia na temat algorytmów

    Wydarzenia

    06-07-2020 08:30 - 11-07-2020 17:00

    Katedra Algorytmów i Modelowania Systemów WETI PG organizuje 4. edycję Międzynarodowej Szkoły Letniej na temat algorytmów dla problemów optymalizacji dyskretnej i głębokiego uczenia

  • BP-EVD: Forward Block-Output Propagation for Efficient Video Denoising

    Denoising videos in real-time is critical in many applications, including robotics and medicine, where varying light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia

    Publikacja

    - Rok 2024

    W pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...

    Pełny tekst do pobrania w portalu

  • Robotics in architectural education

    Robotics rapidly is becoming an important part of architectural design at all stages, from early conceptual work to construction. In this article is presented the present state of the art in the field related to architectural education, from computer numerical control (CNC) milling tools, through drones to multi-axis robotic arms. Professionals involved in modern design techniques often use them to create precise, complex forms...

    Pełny tekst do pobrania w portalu

  • Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego

    Publikacja

    - Rok 2018

    Celem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...

    Pełny tekst do pobrania w portalu

  • Viability of decisional DNA in robotics

    Publikacja

    - Procedia Computer Science - Rok 2014

    The Decisional DNA is an artificial intelligence system that uses prior experiences to shape future decisions. Decisional DNA is written in the Set Of Experience Knowledge Structure (SOEKS) and is capable of capturing and reusing a broad range of data. Decisional DNA has been implemented in several fields including Alzheimer’s diagnosis, geothermal energy and smart TV. Decisional DNA is well suited to use in robotics due to the...

    Pełny tekst do pobrania w portalu

  • Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation

    Publikacja
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Journal of Automation, Mobile Robotics and Intelligent Systems - JAMRIS - Rok 2024

    The evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Integracja bezprzewodowych heterogenicznych sieci IP dla poprawy efektywności transmisji danych na morzu

    Publikacja

    - Rok 2023

    Wraz ze wzrostem istotności środowiska morskiego w naszym codziennym życiu np. w postaci zwiększonego wolumenu transportu realizowanego drogą morską. czy zintensyfikowanych prac dotyczących obserwacji i monitoringu środowiska morskiego, wzrasta również potrzeba opracowania efektywnych systemów komunikacyjnych dedykowanych dla tego środowiska. Heterogeniczne systemy łączności bezprzewodowej integrowane na poziomie warstwy sieciowej...

    Pełny tekst do pobrania w portalu

  • Sathwik Prathapagiri

    Osoby

    Sathwik was born in 2000. In 2022, he completed his Master’s of Science in  Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...

  • Mohsan Ali Master of Science in Computer Science

    Osoby

    Mohsan Ali is a researcher at the University of the Aegean. He won the Marie-Curie Scholarship in 2021 in the field of open data ecosystem (ODECO) to pursue his PhD degree at the University of the Aegean. Currently, he is working on the technical interoperability of open data in the information systems laboratory; this position is funded by ODECO. His areas of expertise are open data, open data interoperability, data science, natural...

  • Opracowanie metodologii rozpoznawania i klasyfikowania emocji w filmach przy użyciu sztucznych sieci neuronowych

    Publikacja

    - Rok 2024

    Celem rozprawy doktorskiej jest opracowanie metodologii pozwalającej na rozpoznawanie i klasyfikację emocji w filmie za pomocą sztucznych sieci neuronowych. W pracy przedstawiono tematykę związaną z kolorowaniem sceny filmowej w kontekście oddziaływania koloru na emocje widza. W celu analizy wpływu filmow na emocje widza dokonano wyboru tytułow filmowych, następnie przeprowadzono szereg wstępnych testow subiektywnych pozwalających...

    Pełny tekst do pobrania w portalu

  • Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning

    Publikacja

    - Rok 2022

    My doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Agnieszka Landowska dr hab. inż.

    Ukończyła studia na dwóch kierunkach: Finanse i bankowość na Uniwersytecie Gdańskim oraz Informatyka na WETI Politechniki Gdańskiej. Od 2000 roku jest związana z Politechniką Gdańską. W 2006 roku uzyskała stopień doktora w dziedzinie nauk technicznych, a w roku 2019 stopień doktora habilitowanego. Aktualnie jej praca naukowa dotyczy zagadnień interakcji człowiek-komputer oraz informatyki afektywnej (ang. affective computing), która...

  • Testing the usability of decisional DNA in robotics

    Publikacja

    - Rok 2010

    W pracy poddano dyskusji i nalizie obszary mozliwych zastowac reprezentacji wiedzy zwanej Decisional DNA w zagadnieniach zwiazanych z robotyka.

  • Applications of Computer Vision in Automation and Robotics

    Publikacja

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Narzędzia i metody obliczeń z użyciem MATLABa

    Wydarzenia

    19-03-2020 10:00 - 19-03-2020 13:15

    Dn. 19.03.2020 w godz. 10.00–13.15 na Politechnice Gdańskiej odbędzie się seminarium w języku angielskim poświęcone wykorzystaniu MATLABa w badaniach naukowych i dydaktyce.

  • Aleksandra Teresa Wiśniewska dr inż.

    education Postgraduate studies in “ Scandinavian Studies“ University of Gdańsk (2019-2020), Postgraduate studies in "Research Project Management and Commercialization of Research Results" Gdańsk University of Technology, Faculty of Management and Economics (2010–2011), Postgraduate studies "Control & Management of Lean Manufacturing in Network Systems", Fachhochschule Karlsruhe (1998–2000), Master's studies "Automation...

  • Oprogramowanie Systemów Elektronicznych 2023/2024

    Kursy Online
    • M. Kowalewski

    {mlang pl} Cel kursu: Programowanie urządzeń pomiarowych, obsługa interfejsów komputerowych, poznanie mechanizmów zwiększania wydajności oprogramowania (Win32 API, DLL, ODBC), projektowanie aplikacji wielozadaniowych. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic...

  • Oprogramowanie Systemów Elektronicznych 2021/2022

    Kursy Online
    • M. Kowalewski

    {mlang pl} Cel kursu: Programowanie urządzeń pomiarowych, obsługa interfejsów komputerowych, poznanie mechanizmów zwiększania wydajności oprogramowania (Win32 API, DLL, ODBC), projektowanie aplikacji wielozadaniowych. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic...

  • Infosystemy Elektroniczne 2023/2024

    Kursy Online
    • M. Kowalewski

    {mlang pl} Cel kursu: Poznanie zasad funkcjonowania różnorodnych infosystemów elektronicznych, obejmujących zastosowania przemysłowe i komercyjne elektroniki. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic Systems" na kierunku Elektronika.Obieralny dla specjalności...

  • Infosystemy Elektroniczne 2021/2022

    Kursy Online
    • M. Kowalewski

    {mlang pl} Cel kursu: Poznanie zasad funkcjonowania różnorodnych infosystemów elektronicznych, obejmujących zastosowania przemysłowe i komercyjne elektroniki. Dla studentów jakiego kierunku/stopnia studiów dany kurs jest przeznaczony: Przedmiot prowadzonych na studiach II stopnia.Obowiązkowy dla specjalności "Komputerowe Systemy Elektroniczne" i "Computer Electronic Systems" na kierunku Elektronika.Obieralny dla specjalności...

  • E-learning courses

    Kursy Online
    • A. Wardziński
    • G. Gołaszewski
    • T. Zawadzka
    • A. Karpus
    • M. Wróbel
    • A. Przybyłek
    • W. Waloszek
    • A. Landowska
    • K. Goczyła

    Strona zawiera zbiór kursów prowadzonych metodą e-learning. Kursy te są skierowane do studentów I stopnia kierunku informatyka na VII semestrze profilu Bazy danych, do studentów na kierunku informatyka na II semestrze studiów II stopnia na specjalności ZAD i ISI.

  • Machine learning for PhD students

    Kursy Online
    • W. Artichowicz

    An introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering

  • Federated Learning in Healthcare Industry: Mammography Case Study

    The paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • e-Learning - user's guide for students

    Kursy Online

    e-Learning - user's guide for students

  • Assessing the attractiveness of human face based on machine learning

    Publikacja

    The attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...

    Pełny tekst do pobrania w portalu

  • Self-Supervised Learning to Increase the Performance of Skin Lesion Classification

    To successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...

    Pełny tekst do pobrania w portalu

  • Lifelong Learning Idea in Architectural Education

    The recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...

    Pełny tekst do pobrania w portalu

  • Robotics

    Czasopisma

    ISSN: 2218-6581

  • Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors

    In the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Annual Review of Control Robotics and Autonomous Systems

    Czasopisma

    eISSN: 2573-5144

  • Robotics for human health and performance (PG_00054982) 04.2024

    Kursy Online
    • W. Sieklicki

    During this course students will be provided with the knowledge in areas of robotics and biomechanics necessary to design instrumentation for human health and performance, as well as about human-robot interface.

  • Knowledge sharing and knowledge hiding in light of the mistakes acceptance component of learning culture- knowledge culture and human capital implications

    Publikacja

    - The Learning Organization - Rok 2022

    Purpose: This study examines the micromechanisms of how knowledge culture fosters human capital development. Method: An empirical model was developed using the structural equation modeling method (SEM) based on a sample of 321 Polish knowledge workers employed in different industries. Findings: This study provides direct empirical evidence that tacit knowledge sharing supports human capital, whereas tacit knowledge hiding does...

    Pełny tekst do pobrania w portalu