Wyniki wyszukiwania dla: DIELECTRIC MATERIALS
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublikacjaDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Deposition and characterization of organic polymer thin films using a dielectric barrier discharge with different C2Hm/N2 (m = 2, 4, 6) gas mixtures
PublikacjaOrganic polymer thin films have been deposited on Si(100) and aluminum coated glass substrates by a dielectric barrier discharge (DBD) operated at medium pressure using different C2Hm/N2 (m = 2, 4, 6) gas mixtures. The deposited films were characterized by various spectroscopic techniques. Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) revealed the chemical functional groups present in the films. The surface...
-
Highly-Miniaturized Microfluidically-Based Frequency Reconfigurable Antenna Diplexer Employing Half-Mode SIRW
PublikacjaThis article introduces a super-miniaturized frequency reconfigurable antenna diplexer based on microfluidic techniques. The proposed structure is developed using a half-mode substrate-integrated rectangular waveguide (HMSIRW). The antenna architecture consists of two HMSIRW cavities loaded with L-shaped slots, which are excited by two microstrip feedlines to realize two distinct radiating frequency bands. The footprint of the...
-
An Innovative Antenna Array with High Inter Element Isolation for Sub-6 GHz 5G MIMO Communication Systems
PublikacjaA novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna’s footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted...
-
An MOR Algorithm Based on the Immittance Zero and Pole Eigenvectors for Fast FEM Simulations of Two-Port Microwave Structures
PublikacjaThe aim of this article is to present a novel model-order reduction (MOR) algorithm for fast finite-element frequency-domain simulations of microwave two-port structures. The projection basis used to construct the reduced-order model (ROM) comprises two sets: singular vectors and regular vectors. The first set is composed of the eigenvectors associated with the poles of the finite-element method (FEM) state-space system, while...
-
A Microwave Sensor with Operating Band Selection to Detect Rotation and Proximity in the Rapid Prototyping Industry
PublikacjaThis paper presents a novel sensor for detecting and measuring angular rotation and proximity, intended for rapid prototyping machines. The sensor is based on a complementary split-ring resonator (CSRR) driven by a conductor-backed coplanar waveguide. The sensor has a planar topology, which makes it simple and cost-effective to produce and accurate in measuring both physical quantities. The sensor has two components, a rotor, and...
-
Expedited Simulation-Driven Multi-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna
PublikacjaMajority of practical engineering design problems require simultaneous handling of several criteria. Although many of design tasks can be turned into single-objective problems using sufficient formulations, in some situations, acquiring comprehensive knowledge about possible trade-offs between conflicting objectives may be necessary. This calls for multi-objective optimization that aims at identifying a set of alternative, Pareto-optimal...
-
Designing a high-sensitivity dual-band nano-biosensor based on petahertz MTMs to provide a perfect absorber for early-stage non-melanoma skin cancer diagnostic
PublikacjaThe purpose of this study is development of a novel high-performance low-Petahertz (PHz) biosensor for non-melanoma skin cancer (NMSC) diagnosis. The presented device is designed to work within a microwave imaging regime, which is a promising alternative to conventional diagnostic methods such as visual examination, dermoscopy, and biopsy. The suggested biosensor incorporates a dual-band perfect absorber (operating bands at 0.909...
-
Ultra-Compact Self-Quadruplexing Microfluidically Frequency Reconfigurable Slot Antenna Using Half-Mode SIW
PublikacjaIn this brief, the design of an ultra-compact self-quadruplexing frequency reconfigurable antenna (SQFRA) utilizing a half-mode substrate-integrated waveguide (HMSIW) and microfluidic channels is discussed. Four HMSIW cavities fed by four microstrip lines and slots are used to construct a highly compact antenna. The microstrip feedings to the HMSIW cavities are applied in such a way that the proposed antenna exhibits self-quadruplexing...
-
Microfluidically Frequency-Reconfigurable Self-Quadruplexing Antenna Based on Substrate Integrated Square-Cavity
PublikacjaIn this article, a novel concept of self-quadruplexing tunable antenna (SQTA) enabled by microfluidic channels is investigated. The operating channels are either filled with air or dielectric liquids to enable frequency tunability. The proposed SQTA is implemented on the substrate-integrated square-cavity (SISC). A swastika-shaped slot is milled on the top-surface of the SISC to create four quarter-mode resonators. The resonators...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublikacjaThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
High gain/bandwidth off‑chip antenna loaded with metamaterial unit‑cell impedance matching circuit for sub‑terahertz near‑field electronic systems
PublikacjaAn innovative off-chip antenna (OCA) is presented that exhibits high gain and efficiency performance at the terahertz (THz) band and has a wide operational bandwidth. The proposed OCA is implemented on stacked silicon layers and consists of an open circuit meandering line. It is shown that by loading the antenna with an array of subwavelength circular dielectric slots and terminating it with a metamaterial unit cell, its impedance...
-
Coupled nonlinear Schrödinger equations in optic fibers theory
PublikacjaIn this paper a detailed derivation and numerical solutions of CoupledNonlinear Schr¨odinger Equations for pulses of polarized electromagnetic wavesin cylindrical fibers has been reviewed. Our recent work has been compared withsome previous ones and the advantage of our new approach over other methods hasbeen assessed. The novelty of our approach lies is an attempt to proceed withoutloss of information within the frame of basic...
-
High frequency impulse ground penetrating radar application in assessment of interlayer connections
PublikacjaGround Penetrating Radar (GPR) technique is commonly used in the nondestructive evaluation of pavement structures. In particular, this method is used to estimate thicknesses of pavement layers as well as it can be utilized in advanced studies of pavement structures. The device presented in this paper comprise the high frequency impulse antennas that allow for investigating the interlayer zones in terms of their electromagnetic...
-
Electronic conductivity in the SiO2-PbO-Fe2O3 glass containing magnetic nanostructures
PublikacjaThe linear impedance spectra of iron–silicate–lead glass samples were measured in the frequency range from 1 MHz to 1 MHz and in the temperature range from 153 K to 423 K. The structure was investigated by means of XRD and atomic force microscopy. Local electrical and magnetic properties of the samples were tested with the aid of electrostatic force microscopy (EFM) and magnetic force microscopy (MFM). The obtained results show...
-
Electrical properties and structure of lead-borate glass containing iron ions.
PublikacjaThe ac and dc conductivity in iron–lead-borate glass samples was investigated in the frequency range from 1 mHz to 1 MHz and in the temperature range from 153 K to 423 K. The structure was investigated by the means of atomic force microscopy (AFM) and the crystalline phases (if present) were identified by the means of X-ray diffractometry. Two types of ac electrical behaviour were observed. The first group of glass samples which...
-
Rapid Design of 3D Reflectarray Antennas by Inverse Surrogate Modeling and Regularization
PublikacjaReflectarrays (RAs) exhibit important advantages over conventional antenna arrays, especially in terms of realizing pencil-beam patterns without the employment of the feeding networks. Unfortunately, microstrip RA implementations feature narrow bandwidths, and are severely affected by losses. A considerably improved performance can be achieved for RAs involving grounded dielectric layers, which are also easy to manufacture using...
-
DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
PublikacjaThe solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential -- a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the...
-
Electronically Excited States in Solution via a Smooth Dielectric Model Combined with Equation-of-Motion Coupled Cluster Theory
PublikacjaWe present a method for computing excitation energies for molecules in solvent, based on the combination of a minimal parameter implicit solvent model and the equation-of-motion coupled-cluster singles and doubles method (EOM-CCSD). In this method, the solvent medium is represented by a smoothly varying dielectric function, constructed directly from the quantum mechanical electronic density using only two tunable parameters. The...
-
Frequency Selective Surface Based MIMO Antenna Array for 5G Millimeter-Wave Applications
PublikacjaAbstract: In this paper a radiating element consisting of a modified circular patch is proposed for MIMO arrays for 5G millimeter-wave applications. The radiating elements in the proposed 2×2 MIMO antenna array are orthogonally configured relative to each other to mitigate mutual coupling that would otherwise degrade the performance of the MIMO system. The MIMO array was fabri-cated on Rogers RT/Duroid high frequency substrate...
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublikacjaThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublikacjaReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
Multi-objective optimization of expensive electromagnetic simulation models
PublikacjaVast majority of practical engineering design problems require simultaneous handling of several criteria. For the sake of simplicity and through a priori preference articulation one can turn many design tasks into single-objective problems that can be handled using conventional numerical optimization routines. However, in some situations, acquiring comprehensive knowledge about the system at hand, in particular, about possible...
-
A Compact Circularly Polarized Dielectric Resonator Antenna with MIMO Characterizations for UWB Applications
PublikacjaUltra-wideband (UWB) technology is extensively used in indoor navigation, medical applications, and Internet of Things (IoT) devices due to its low power consumption and resilience against multipath fading and losses. This paper examines a multiple input multiple-output (MIMO), circularly polarized (CP) dielectric resonator antenna (DRA) for UWB systems. Compact form factor, high gain, wideband response, improved port isolation,...
-
Evaluating the impact of ZnO doping on electrical and thermal properties of calcium-aluminosilicate oxynitride glass-ceramics
PublikacjaThis study aimed to investigate the impact of ZnO content on the structure, thermal, and electrical properties of oxynitride glass-ceramic(s) within the Ca–Al–Si–O–N (CASON) system. The base glass had the composition of Ca7Al14Si17O52N7, with ZnO additions ranging from 3 to 15 % by weight. A pristine Ca7Al14Si17O52N7 glass was successfully prepared by melt-quenching technique followed by converted into glass-ceramic by incorporating various...
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublikacjaAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublikacjaPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
PublikacjaAntennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside...
-
Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach
PublikacjaThe knowledge of the first hyperpolarizability tensor elements of molecular groups is crucial for a quantitative interpretation of the sum frequency generation (SFG) activity of thin organic films at interfaces. Here, the SFG response of the terminal methyl group of a dodecanethiol (DDT) monolayer has been interpreted on the basis of calculations performed at the density functional theory (DFT) level of approximation. In particular,...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublikacjaDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublikacjaWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis
PublikacjaIonic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can also play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in...
-
Photovoltaic phenomena in devices with perfluorozincphthalocyanine layer
PublikacjaThe course of photovoltaic phenomenon in organic photovoltaic cells utilizing thin layers of perfluorozincphthalocyanine was studied in few single and planar bilayer configurations. Mechanisms of photogeneration and recombination of free charge carriers were determined and active interfaces were localized. In case of single layer cells these interfaces were located at the front electrode/F16ZnPc junctions, whereas photogeneration...
-
Graphene-based Silicone rubber Nanocomposites: Preparation, Characterization, and Properties
PublikacjaThis study aims to understand better the mechanical, thermal, and tribological behavior of silicone rubber nanocomposites. Graphite, exfoliated graphite, reduced graphene oxide, ionic liquid modified graphene oxide, silane-modified graphene oxide, fumed silica, and other fillers were used in this study. Adding graphene-based fillers to the silicone rubber matrix substantially improves the nanocomposite's mechanical, thermal, and...
-
Electrohydrodynamic Flow Patterns in a Narrow Electrostatic Precipitator with Longitudinal Wire Electrode for Various Electrode Geometries
PublikacjaRecently narrow electrostatic precipitators (ESPs) have become a subject of interest because of their possible application in diesel engines. In this paper results of 2-dimensional (2D) Particle Image Velocimetry (PIV) measurements of the flow patterns in a narrow ESP for a various electrode geometries are presented. The PIV measurements were carried out in the observation plane that is perpendicular to the ESP duct. The ESP was...
-
Quality prediction of foil capacitors by acoustic emission signals
PublikacjaJakość i trwałość kondensatorów foliowych jest zależna od ich warunków pracy (np. nadmiarowego napięcia pracy, temperatury, wilgotności) oraz od potencjalnych defektów wprowadzonych na różnych etapach wytwarzania kondensatorów. Nieustanny nacisk na wzrost jakości wytwarzanych elementów przy jednoczesnej redukcji kosztów wytwarzania oznacza, że nowe, tanie i szybkie metody predykcji jakości tych elementów są mocno poszukiwane. W...