wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: DESIGN OPTIMIZATION, MICROWAVE DESIGN, MINIATURIZED STRUCTURES, NESTED KRIGING, SURROGATE MODELING
-
Low-Cost Surrogate Modeling of Miniaturized Microwave Components Using Nested Kriging
PublikacjaIn the paper, a recently reported nested kriging methodology is employed for modeling of miniaturized microwave components. The approach is based on identifying the parameter space region that contains high-quality designs, and, subsequently, rendering the surrogate in this subset. The results obtained for a miniaturized unequal-power-split rat-race coupler and a compact three-section impedance transformer demonstrate reliability...
-
Nested Kriging with Variable Domain Thickness for Rapid Surrogate Modeling and Design Optimization of Antennas
PublikacjaDesign of modern antennas faces numerous difficulties, partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities (circular polarization, pattern diversity, band-notch operation), but also constraints imposed upon the physical size of the radiators. Conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublikacjaData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublikacjaFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublikacjaSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublikacjaDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Adrian Bekasiewicz dr hab. inż.
OsobyAdrian Bekasiewicz received the MSc, PhD, and DSc degrees in electronic engineering from Gdansk University of Technology, Poland, in 2011, 2016, and 2020, respectively. In 2014, he joined Engineering Optimization & Modeling Center at Reykjavik University, Iceland, where he held a Research Associate and a Postdoctoral Fellow positions, respectively. Currently, he is an Associate Professor and the head of Teleinformation Networks...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublikacjaContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublikacjaIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Surrogate modeling of impedance matching transformers by means of variable‐fidelity electromagnetic simulations and nested cokriging
PublikacjaAccurate performance evaluation of microwave components can be carried out using full‐wave electromagnetic (EM) simulation tools, routinely employed for circuit verification but also in the design process itself. Unfortunately, the computational cost of EM‐driven design may be high. This is especially pertinent to tasks entailing considerable number of simulations (eg, parametric optimization, statistical analysis). A possible...
-
Accelerated multi-objective design of miniaturized microwave components by means of nested kriging surrogates
PublikacjaDesign of microwave components is an inherently multiobjective task. Often, the objectives are at least partially conflicting and the designer has to work out a suitable compromise. In practice, generating the best possible trade‐off designs requires multiobjective optimization, which is a computationally demanding task. If the structure of interest is evaluated through full‐wave electromagnetic (EM) analysis, the employment of...
-
Expedited Variable-Resolution Surrogate Modeling of Miniaturized Microwave Passives in Confined Domains
PublikacjaDesign of miniaturized microwave components is largely based on computational models, primarily, full-wave electromagnetic (EM) simulations. EM analysis is capable of giving an accurate account for cross-coupling effects, substrate and radiation losses, or interactions with environmental components (e.g., connectors). Unfortunately, direct execution of EM-based design tasks such as parametric optimization or uncertainty quantification,...
-
Rapid optimization of compact microwave passives using kriging surrogates and iterative correction
PublikacjaDesign of contemporary microwave components is—in a large part—based on full-wave electromagnetic (EM) simulation tools. The primary reasons for this include reliability and versatility of EM analysis. In fact, for many microwave structures, notably compact components, EM-driven parameter tuning is virtually imperative because traditional models (analytical or network equivalents) are unable to account for the cross-coupling effects,...
-
Nested Kriging Surrogates for Rapid Multi-Objective Optimization of Compact Microwave Components
PublikacjaA procedure for rapid EM-based multi-objective optimization of compact microwave components is presented. Our methodology employs a recently developed nested kriging modelling to identify the search space region containing the Pareto-optimal designs, and to construct a fast surrogate model. The latter permits determination of the initial Pareto set, further refined using a separate surrogate-assisted process. As an illustration,...
-
Recent advances in high-frequency modeling by means of domain confinement and nested kriging
PublikacjaDevelopment of modern high-frequency components and circuits is heavily based on full-wave electromagnetic (EM) simulation tools. Some phenomena, although important from the point of view of the system performance, e.g., EM cross-coupling effects, feed radiation in antenna arrays, substrate anisotropy, cannot be adequately accounted for using simpler means such as equivalent network representations. Consequently, the involvement...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublikacjaParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Zdzisław Kowalczuk prof. dr hab. inż.
OsobyW 1978 ukończył studia w zakresie automatyki i informatyki na Wydziale Elektroniki Politechniki Gdańskiej, następnie rozpoczął pracę na macierzystej uczelni. W 1986 obronił pracę doktorską, w 1993 habilitował się na Politechnice Śląskiej na podstawie pracy Dyskretne modele w projektowaniu układów sterowania. W 1996 mianowany profesorem nadzwyczajnym, w 2003 otrzymał tytuł profesora nauk technicznych. W 2006 założył i od tego czasu...
-
Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging
PublikacjaUtilization of electromagnetic (EM) simulation tools has become indispensable for reliable evaluation of microwave components. As the cost of an individual analysis may already be considerable, the computational overhead associated with EM-driven tasks that require massive simulations (e.g., optimization) may turn prohibitive. One of mitigation methods is the employment of equivalent network models. Yet, they are incapable of accounting...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Results and models for Novel high frequency components with non-conventional shape employing smooth geometry deformation of 3D solid with FFD
Dane BadawczeThe project aims to investigate the possibility of developing and manufacturing novel high frequency devices having non-standard geometries, allowing for improved electromagnetic performance over what is achievable with currently available design tools. The non-conventional geometry will be obtained by employing the free-form shape deformation technique...
-
Accelerated design optimization of miniaturized microwave passives by design reusing and Kriging interpolation surrogates
PublikacjaElectromagnetic (EM) analysis has become ubiquitous in the design of microwave components and systems. One of the reasons is the increasing topological complexity of the circuits. Their reliable evaluation—at least at the design closure stage—can no longer be carried out using analytical or equivalent network representations. This is especially pertinent to miniaturized structures, where considerable EM cross-coupling effects occurring...
-
Expedited EM-Driven Design of Miniaturized Microwave Hybrid Couplers Using Surrogate-Based Optimization
PublikacjaMiniaturization of microwave hybrid couplers is important for contemporary wireless communication engineering. Using standard computer-aided design methods for development of compact structures is extremely challenging due to a general lack of computationally efficient and accurate simulation models. Poor accuracy of available equivalent circuits results from neglecting parasitic cross-couplings that greatly affect the performance...
-
Accurate simulation-driven modeling and design optimization of compact microwave structures
PublikacjaCost efficient design optimization of microwave structures requires availability of fast yet reliable replacement models so that multiple evaluations of the structure at hand can be executed in reasonable timeframe. Direct utilization of full-wave electromagnetic (EM) simulations is often prohibitive. On the other hand, accurate data-driven modeling normally requires a very large number of training points and it is virtually infeasible...
-
Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging
PublikacjaDesign of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations,...
-
Expedited Multi-Objective Design Optimization of Miniaturized Microwave Structures Using Physics-Based Surrogates
PublikacjaIn this paper, a methodology for fast multi-objective design optimization of compact microwave circuits is presented. Our approach exploits an equivalent circuit model of the structure under consideration, corrected through implicit and frequency space mapping, then optimized by a multi-objective evolutionary algorithm. The correction/optimization of the surrogate is iterated by design space confinement and segmentation based on...
-
Design-oriented modeling of antenna structures by means of two-level kriging with explicit dimensionality reduction
PublikacjaThe employment of full-wave electromagnetic (EM) analysis is a practical necessity in the design of contemporary antenna structures. This is because simpler models are generally not available or of limited accuracy. At the same time, EM-based design is computationally expensive. Consequently, the ways of accelerating tasks such as parametric optimization or uncertainty quantification have to be sought. A possible workaround that...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublikacjaIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures
PublikacjaMiniaturization is one of the important concerns of contemporary wireless communication systems, especially regarding their passive microwave components, such as filters, couplers, power dividers, etc., as well as antennas. It is also very challenging, because adequate performance evaluation of such components requires full-wave electromagnetic (EM) simulation, which is computationally expensive. Although high-fidelity EM analysis...
-
Multi-Fidelity Local Surrogate Model for Computationally Efficient Microwave Component Design Optimization
PublikacjaIn order to minimize the number of evaluations of high-fidelity (“fine”) model in the optimization process, to increase the optimization speed, and to improve optimal solution accuracy, a robust and computational-efficient multi-fidelity local surrogate-model optimization method is proposed. Based on the principle of response surface approximation, the proposed method exploits the multi-fidelity coarse models and polynomial interpolation...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublikacjaA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublikacjaUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublikacjaDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublikacjaA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Design specification management with automated decision-making for reliable optimization of miniaturized microwave components
PublikacjaThe employment of numerical optimization techniques for parameter tuning of microwave components has nowadays become a commonplace. In pursuit of reliability, it is most often carried out at the level of full-wave electromagnetic (EM) simulation models, incurring considerable computational expenses. In the case of miniaturized microstrip circuits, densely arranged layouts with strong cross-coupling effects make EM-driven tuning...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublikacjaMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublikacjaDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublikacjaPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublikacjaPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
Rapid Microwave Design Optimization in Frequency Domain Using Adaptive Response Scaling
PublikacjaIn this paper, a novel methodology for cost-efficient microwave design optimization in the frequency domain is proposed. Our technique, referred to as adaptive response scaling (ARS), has been developed for constructing a fast replacement model (surrogate) of the high-fidelity electromagnetic-simulated model of the microwave structure under design using its equivalent circuit (low-fidelity model). The basic principle of ARS is...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublikacjaThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
Fast surrogate-assisted simulation-driven design of compact microwave hybrid couplers
PublikacjaThis work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bot-tom–up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface...
-
On Computationally-Efficient Reference Design Acquisition for Reduced-Cost Constrained Modeling and Re-Design of Compact Microwave Passives
PublikacjaFull-wave electromagnetic (EM) analysis has been playing a major role in the design of microwave components for the last few decades. In particular, EM tools allow for accurate evaluation of electrical performance of miniaturized structures where strong cross-coupling effects cannot be adequately quantified using equivalent network models. However, EM-based design procedures (parametric optimization, statistical analysis) generate...
-
Reduced-cost surrogate modeling of input characteristics and design optimization of dual-band antennas using response features
PublikacjaIn this article, a procedure for low-cost surrogate modeling of input characteristics of dual-band antennas has been discussed. The number of training data required for construction of an accurate model has been reduced by representing the antenna reflection response to the level of suitably defined feature points. The points are allocated to capture the critical features of the reflection characteristic, such as the frequencies...
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublikacjaPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublikacjaHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublikacjaPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublikacjaUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E.,...
-
Design-Oriented Constrained Modeling of Antenna Structures
PublikacjaFast surrogate models are crucially important to reduce the cost of design process of antenna structures. Due to curse of dimensionality, standard (data-driven) modeling methods exhibit serious limitations concerning the number of independent geometry parameters that can be handled but also (and even more importantly) their parameter ranges. In this work, a design-oriented modeling framework is proposed in which the surrogate is...
-
Zero-Pole Approach in Microwave Passive Circuit Design
PublikacjaIn this thesis, optimization strategies for design of microwave passive structures including filters, couplers, antenna and impedance transformer and construction of various surroogate models utilized to fasten the design proces have been discussed. Direct and hybrid optimization methodologies including space mapping and multilevel algorithms combined with various surrogate models at different levels of fidelity have been utilized...