Filtry
wszystkich: 1278
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: MAGNETIC FLUX LEAKAGE
-
Reduction of the Velocity Impact on the Magnetic Flux Leakage Signal
PublikacjaThe velocity effect on the magnetic flux leakage (MFL) signal was investigated in this paper. Experiments were performed for velocity of the MFL tool within the range of 0–2 m/s. The velocity was not constant during each measurement to imitate real operational conditions of the MFL tool. Two components of the leakage were measured, i.e. the tangential to the motion direction (x) and the normal to the investigated surface (z). In...
-
Inspection of Gas Pipelines Using Magnetic Flux Leakage Technology
PublikacjaMagnetic non-destructive testing methods can be classified into the earliest methods developed for assessment of steel constructions. One of them is the magnetic flux leakage technology. A measurement of the magnetic flux leakage is quite commonly used for examination of large objects such as tanks and pipelines. Construction of a magnetic flux leakage tool is relatively simple, but a quantitative analysis of recorded data is a...
-
A Comparative Study on Methods of Distinction Between Near- and Far-Side Defects as Techniques Used Alongside with the Magnetic Flux Leakage Testing
PublikacjaResults of the finite element analysis show that a far-side defect in a steel plate, with the depth greater by 10% of the plate thickness than a near-side defect, can produce a very similar magnetic flux leakage (MFL) signal. Due to the fact that a measurement of MFL itself can lead to misclassification of a far-side defect as a near-side one, and thus to underestimation of its depth, a comparative study of three complementary...
-
Magnetic flux leakage signals of near side defects measured with different velocities
Dane BadawczeThe dataset contains raw signals measured with the use of the magnetic flux leakage (MFL) technique. Linear Hall effect sensors A1324 were used to measure magnetic flux leakage. Three voltage signals were measured: Bx sensor output, Bz1 sensor output, and difference of Bz1 and Bz2 outputs. An output of a Bx sensor was directly proportional to the tangential...
-
Magnetic flux leakage signals of far side defects measured with different velocities
Dane BadawczeThe dataset contains raw signals measured with the use of the magnetic flux leakage (MFL) technique. Linear Hall effect sensors A1324 were used to measure magnetic flux leakage. Three voltage signals were measured: Bx sensor output, Bz1 sensor output, and difference of Bz1 and Bz2 outputs. An output of a Bx sensor was directly proportional to the tangential...
-
Analysis of leakage flux in deenergized transformer
PublikacjaThe article presents the numerical analysis of the magnetic field that occurs around the transformer after it has been switched off. The purpose of this analysis was to determine if it is possible to define the residual fluxes in the legs of transformer based on the measurements of this field. These studies have allowed us to determine the quantity and location of the sensors. The influence of the Earth's magnetic field has also...
-
Research of leakage magnetic field in deenergized transformer
PublikacjaThe article deals with the issue of the numerical analysis of the magnetic field occurring around the transformer after it has been powered down. The main goal of this analysis was to examine if it is possible to identify the residual fluxes in the transformer legs based on this fields’ measurements. It was also intended to determine the type and the location of magnetic sensors. Numerical analysis of the magnetic field was performed....
-
Dynamics of Field Line Mappings in Magnetic Flux Tubes
PublikacjaWe study the topological constraints on the dynamics of magnetic field lines in flux tubes. Our approach is based on the application of the topological invariant: fixed point index. We consider periodic flux tubes and find various restrictions on the field lines that come from the sequence of fixed point indices of iterations. We also analyze the case of a tube with a cylindrical obstacle, deducing some special dynamical properties...
-
A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux
PublikacjaIn this work, the concept of an energy conversion system for wind turbines based on the modified permanent magnet synchronous generator (PMSG) is presented. In the generator, a pair of three-phase windings is used, one of which is connected in a “star” and the second in a “delta” configuration. At the outputs of both windings, two six-pulse uncontrolled (diode) rectifiers are included. These rectifiers are mutually coupled by a...
-
Evaluation of time and space distribution of magnetic flux density in a steel plate magnetized by a C-core
PublikacjaBadano wpływ częstości magnesowania płyty stalowej na rozkład przestrzenny indukcji magnetycznej wewnątrz tej płyty. Rozkład ten oceniano na podstawie pomiaru natężenia emisji magnetoakustycznej a także rozkładu na powierzchni płyty natężenia efektu Barkhausena. Wyniki dyskutowane są ilościowo i porównane z wynikami modelowania metodą elementów skończonych, w której uwzględniono efekt powstawania prądów wirowych.
-
Investigation of the Effect of The Temperature and Magnetization Pattern on Flux Density, Instantaneous Torque, Unbalanced Magnetic Forces of a Surface Inset PMM
PublikacjaElectrical machines utilized in domestic applications such as ceiling fans should have low losses and cost. Permanent magnets are used instead of rotor excitation to reduce losses. Therefore, not only the losses of the rotor winding are eliminated, but also the efficiency of the machine is increased. A surface inset consequent pole (SICP) machine has also been used to reduce costs. Because less magnets are utilized in this structure....
-
Evaluation by means of magneto-acoustic emission and Barkhausen effect of time and space distribution of magnetic flux density in ferromagnetic plate magnetized by a C-core
PublikacjaPokazano wyniki badań emisji magnetoakustycznej (EMA) i efektu Barkhausena (HEB) dla dwóch płyt stalowych o różnych wymiarach. Wyniki te są porównane z wynikami modelowania zjawiska EMA z wykorzystaniem metody elementów skończonych z uwzględniem efektu prądów wirowych. Uzyskano zadawalające dopasowanie modelu, który odtwarzał poszerzenie maksimum EMA oraz przesunięcie fazowe i zmianę amplitudy HEB.
-
Improved methods for stator end winding leakage inductance calculation
PublikacjaCalculating the stator end-winding leakage inductance, taking into account the rotor, is difficult due to the irregular shape of the end-winding. The end-winding leakage may distribute at the end of the active part and the fringing flux of the air gap. The fringing flux belongs to the main flux but goes into the end-winding region. Then, not all the magnetic flux occurring in the end region is the end-winding leakage flux. The...
-
Determination of leakage inductances of multi-winding and single-phase transformer
PublikacjaThis paper presents the method for determination of leakage inductances of single-phase and multi-winding transformer. The matrix of leakage inductances takes into account leakage self and also leakage mutual magnetic couplings. It is assumed that there is a flux common to all windings and several leakage fluxes referred to a particular winding. The flux linkages of each coil needed fo calculation of leakage inductances was computed...
-
Magnetic field gradient as the most useful signal for detection of flaws using MFL technique
PublikacjaThe magnetic flux leakage (MFL) technique is extensively used for detection of flaws as well as for evaluation of their dimensions in ferromagnetic materials. However, proper analysis of the MFL signal is hindered by the MFL sensor velocity causing distortions of this signal. Traditionally measured components of the MFL signal are particularly sensitive to the scanning velocity. In this paper, an another signal – the gradient of...
-
Isolation of the relative decrease in magnetic permeability contribution to reluctance of an open magnetic circuit based on stray field measurements
PublikacjaThe goal of the study was to evaluate a relative decrease in magnetic permeability in open magnetic circuits based on stray magnetic field measurements. The boundary element method was used to simulate magnetic circuits with variable geometry and variable magnetic permeability. The simulated magnetic circuits were rectangular or bone-shaped flat samples. Reluctance was increased in the middle of the samples resulting in leakage...
-
Representation of magnetic hysteresis in a circuit model of a single-phase transformer
PublikacjaThe paper presents a mathematical model for the hysteresis phenomenon in a multi-winding single-phase core type transformer. The set of loop differential equations was developed for K-th winding transformer model where the flux linkages of each winding includes a flux common Φ to all windings as function of magneto motive force Θ of all windings. The first purpose of this paper is to determine a hysteresis nonlinearity involved...
-
Separation of the effects of notch and macro residual stress on the MFL signal characteristics
PublikacjaMagnetic flux leakage (MFL) distribution for three configurations of samples has been investigated in order to study the influence of notch and plastic deformation separately as well as together. Samples have been made of S355 steel. The MFL signal measurements were carried out along the longest dimension of the sample over a length of 120 mm. Two components of magnetic field were measured: 1) tangential to the main axis and 2)...
-
Lagrangian model of an isolated dc-dc converter with a 3-phase medium frequency transformer accounting magnetic cross saturation
PublikacjaThis article presents a nonlinear equivalent circuit model of an isolated dc-dc converter with a 3-phase medium frequency transformer. The model takes into account the magnetic cross saturation of the 3-phase core-type magnetic circuit. The model is suitable in detailed electromagnetic transient simulations of power systems involving isolated dc-dc converters. The model is developed using the Lagrange energy method. It involves...
-
Finite Element Method Applied in Electromagnetic NDTE: - A Review
PublikacjaThe paper contains an original comprehensive review of finite element analysis (FEA) applied by researchers to calibrate and improve existing and developing electromagnetic non-destructive testing and evaluation techniques, including but not limited to magnetic flux leakage (MFL), eddy current testing, electromagnetic-acoustic transducers (EMATs). Premium is put on the detection and modelling of magnetic field, as the vast majority...
-
Description of parameters of symmetrical prolate ellipsoid magnetic signature.
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.