Wyniki wyszukiwania dla: SENTIMENT CLASSIFICATION - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: SENTIMENT CLASSIFICATION

Wyniki wyszukiwania dla: SENTIMENT CLASSIFICATION

  • Improving the Accuracy in Sentiment Classification in the Light of Modelling the Latent Semantic Relations

    Publikacja

    - Information - Rok 2018

    The research presents the methodology of improving the accuracy in sentiment classification in the light of modelling the latent semantic relations (LSR). The objective of this methodology is to find ways of eliminating the limitations of the discriminant and probabilistic methods for LSR revealing and customizing the sentiment classification process (SCP) to the more accurate recognition of text tonality. This objective was achieved...

    Pełny tekst do pobrania w portalu

  • Methodology for Text Classification using Manually Created Corpora-based Sentiment Dictionary

    Publikacja

    - Rok 2018

    This paper presents the methodology of Textual Content Classification, which is based on a combination of algorithms: preliminary formation of a contextual framework for the texts in particular problem area; manual creation of the Hierarchical Sentiment Dictionary (HSD) on the basis of a topically-oriented Corpus; tonality texts recognition via using HSD for analysing the documents as a collection of topically completed fragments...

    Pełny tekst do pobrania w portalu

  • Contextual ontology for tonality assessment

    classification tasks. The discussion focuses on two important research hypotheses: (1) whether it is possible to construct such an ontology from a corpus of textual document, and (2) whether it is possible and beneficial to use inferencing from this ontology to support the process of sentiment classification. To support the first hypothesis we present a method of extraction of hierarchy of contexts from a set of textual documents...

    Pełny tekst do pobrania w portalu

  • Sentiment Analysis of Facebook Posts:the Uber case

    Publikacja

    - Rok 2017

    This article analyses the sentiment of opinions, i. e. its classification as phrases with a neutral, positive and negative emotional tone. Data used as a basis for the analysis were opinions expressed by Facebook users about Uber and collected in the period between July 2016 and July 2017. The primary objective of the study was to obtain information about the perceptions of Uber over thirteen consecutive months. The study confirms...

  • An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory

    Publikacja

    - EXPERT SYSTEMS - Rok 2024

    Sentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Evaluation of a company’s image on social media using the Net Sentiment Rate

    Publikacja

    - Rok 2020

    Vast amounts of new types of data are constantly being created as a result of dynamic digitization in all areas of our lives. One of the most important and valuable categories for business is data from social networks such as Facebook. Feedback resulting from the sharing of thoughts and emotions, expressed in comments on various products and services, is becoming the key factor on which modern business is based. This feedback is...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Introduction to the special issue on machine learning in acoustics

    Publikacja
    • Z. Michalopoulou
    • P. Gerstoft
    • B. Kostek
    • M. A. Roch

    - Journal of the Acoustical Society of America - Rok 2021

    When we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...

    Pełny tekst do pobrania w portalu