Filtry
wszystkich: 6464
wybranych: 210
-
Katalog
- Publikacje 3194 wyników po odfiltrowaniu
- Czasopisma 209 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 1963 wyników po odfiltrowaniu
- Wynalazki 11 wyników po odfiltrowaniu
- Projekty 24 wyników po odfiltrowaniu
- Laboratoria 2 wyników po odfiltrowaniu
- Zespoły Badawcze 3 wyników po odfiltrowaniu
- Aparatura Badawcza 5 wyników po odfiltrowaniu
- Kursy Online 524 wyników po odfiltrowaniu
- Wydarzenia 80 wyników po odfiltrowaniu
- Dane Badawcze 448 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: mur oporowy
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 180 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of parameters of symmetrical prolate ellipsoid magnetic signature.
Dane BadawczeThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
The luminescence study of Sr3−xBaxP5N10Cl: Eu2+ nitridophosphate.
Dane BadawczeA series of zeolitic nitridophosphate phosphors Sr2.91−xBaxP5N10Cl:0.09Eu2+ was synthesized by our collaborators from National Taiwan University using a hot isostatic press. Detailed thermal properties were determined using the temperature-dependent photoluminescence intensity and decay time. This research provides a different perspective to analyze...
-
Minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeThe problem of finding the minimal number of periodic points in a given class of self-maps of a space is one of the central questions in periodic point theory. We consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant D_r[f] is equal to the minimal number of r-periodic points...
-
Rheological and compressive strength (ultrasonic pulse method) properties of cement pastes containing iron oxide (Fe3O4) nanoparticles
Dane BadawczeRheological data of cement pastes containing different replacement levels of cement with iron oxide nanoparticles deterimined using MCR 301 (Anton Paar) stress-imposed rheometer, equipped with calibrated helicoidal geometry
-
Rheological properties of cement pastes containing pristine Bi2O3-Gd2O3 and silica coated Bi2O3-Gd2O3 core-shell structures
Dane BadawczeRheological data of cement pastes containing Bi2O3/Gd2O3 particles using MCR 72 (Anton Paar) stress-imposed rheometer, equipped with vane geometry.
-
Phoenixin-14 effect on viability and THBS2 and CDH1 expression in 12Z endometriosis cell line
Dane BadawczePhoenixin-14 is a neuropeptide produced by the paraventricular nuclei of the anterior hypothalamus that regulates reproductive system functions. Its level in patients with endometriosis is reduced and may be the cause of dysregulated HPG-axis. Our study tested endometriosis-specific concentrations of PNX-14 on endometrial epithelial cell line 12Z in...
-
Herbarium of Division of Marine Biology and Ecology University of Gdańsk (DMBE)
Dane BadawczeHerbarium of Division of Marine Biology and Ecology University of Gdańsk (DMBE) is a research herbarium encompassing specimens of vascular plants and algae hosted by the Laboratory of Marine Plant Ecology at University of Gdańsk, Poland. The aim of Herbarium is to preserve marine plant and algae collections mostly from the Gulf of Gdańsk, but the herbarium...
-
FTIR spectra of V2O5 nanostructures
Dane BadawczeThe DataSet contains FTIR spectra of vanadium pentaoxide nanostructures obtained by the sol-gel with different annealing temperatures under synthetic air.
-
Rheology studies of poly(lactic acid)-carbon black-nanodiamond composites
Dane BadawczeThis dataset contains rheology measurements carried out on new 3D printing-dedicated composites with poly-lactic acid (PLA), carbon black (CB) and nanodiamond fillers. Two types of nanodiamonds were studied: detonation nanodiamonds (DND) and boron-doped carbon nanowalls (BCNW). The investigated techniques was performed by melt mass-flow rates (MFR)....
-
Runner bean (Phaseolus coccineus) cultivation on soil supplemented with chicken manure biochar
Dane BadawczeThis dataset contains the findings of runner bean (Phaseolus coccineus) growth and fluorescence metrics, as well as elemental compositions. Seeds of P. coccineus were planted in pots with soil supplemented with chicken manure biochar carbonized at 400, 500, and 600 degrees Celsius. Three different proportions of biochars were added to the soil: 0, 5,...
-
Data on solutions of Hes1 system
Dane BadawczeHes1 protein (hairy and enhancer of split 1) belongs to the helix-loop-helix (bHLH) family of transcription proteins, i.e. DNA-binding proteins in the promoter region or in another region where regulation of transcription processes occurs. The database collects data on solutions of the Hes1 systems with multiple binding sites and the dimer formation...
-
FTIR spectra of VO2 and V2O3 nanostructures
Dane BadawczeThe DataSet contains the FTIR spectra of VO2 and V2O3 nanostructures obtained by the sol-gel with different reaction conditions. The information about xerogel powder synthesis is described in the Journal of Nanomaterials. The xerogel powder was annealing under argon atmosphere in the temperature range 400-1000C. The results show that the morphology...
-
Single Bit Errors in Ethernet II frames
Dane BadawczeCheck our final report for a detailed sumary on how the data was gathered and processed ("Methods" section of the report.pdf file).In the report, there are 7 different datasets mentionted. Below you can find specific information on how to navigate all the folders and construct those datasets from multiple files.
-
Structure of ammonium vanadate synthesis by LPE-IonEx method
Dane BadawczeThe DataSet contains the XRD patterns, FTIR spectra of NH4VO3 crystals with different morphology obtained by the LPE-IonEx method.
-
The luminescence study of Sr0.98Li2.5 + zAl1.5 – zO3 + 2zN1 – 2z:0.02Eu coumpounds.
Dane BadawczeEu2+-doped UCr4C4-type oxynitride phosphors are emerging innovative materials to replace oxide and nitride phosphors for high-end light-emitting devices. A series of Sr0.98Li2.5 + zAl1.5 – zO3 + 2zN1 – 2z:0.02Eu phosphors were synthesized by collaborators from the National Taiwan University by precursor engineering, and these products showed an unexpected...
-
Employees’ self-expansion, work conditions, work engagement and productive behaviours: study 1&2
Dane BadawczeIn the following studies conducted in Poland, we examined the importance of workplace self-expansion and found that it is a significant mediator between job resources (e.g. compensation and benefits, job tasks) and work engagement (Study 1) as well as task-oriented engagement (Study 2). At the same time, our findings prove that job demands (e.g. role...
-
Opposite pressure impact on electron-phonon coupling in Eu2+ and Ce3+ doped AlN
Dane BadawczeThis data analyzes the influence of pressure on electron–lattice interactions in the 5d excited states of Ce3+ and Eu2+ in the AlN host based on pressure-dependent photoluminescence and photoluminescence excitation spectra. High-pressure measurements on AlN samples doped with Eu2+ and Ce3+ ions reveal that the Stokes shift increases with pressure for...
-
Ultrahigh Quantum Efficiency Near-Infrared-II Emission Achieved by Cr3+ Clusters to Ni2+ Energy Transfer
Dane BadawczeIncreasing demand for near-infrared-II (NIR-II) light sources requires improved NIR-II phosphors. We present a series of phosphors codoped with Cr3+ and Ni2+ that possess NIR-II emission with an unprecedented internal quantum efficiency (IQE) of 97.4%. Our study reveals an energy transfer mechanism involving clusters of Cr3+ where luminescent centers...
-
The luminescence study of Sc2(1–x)Ga2xO3:Cr3+/4+ coumpounds
Dane BadawczeThe growing interest in the use of near-infrared (NIR) radiation for spectroscopy, optical communication, and medical applications spanning both NIR-I (700–900 nm) and NIR-II (900–1700 nm) has driven the need for new NIR light sources. NIR phosphor-converted light-emitting diodes (pc-LEDs) are expected to replace traditional lamps mainly due to their...