Filters
total: 3097
filtered: 453
Search results for: THERMAL FRICTION CONTACT
-
TiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A41/#B39
Open Research DataWear tests in sliding friction of TiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiC over TiC . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The...
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #A25/#B21
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 9 min....
-
CrN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B22/#A23
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 6 min. The test...
-
SiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A33/#B34
Open Research DataWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B21/#A21
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 25 min....
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#A47
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 20 min. The test...
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#B45
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 90 min. The test...
-
Influence of novolac phenolic resins and butadiene rubbers on airborne wear particles emission from train brake friction materials against steel brake discs with roughness of Ra2.5
Open Research DataThree train brake materials based on straight or resorcinol-modified novolac phenolic resin and nitrile or styrene-butadiene rubber were tested during pin-on-disc tribological tests. Each material was tested and retested at 9 different friction regimes with various contact pressure values (0.33, 0.66 and 1 MPa) and various sliding velocity values (0.6,...
-
Sliding friction of alumina (Al2O3) with friction induced vibrations
Open Research DataTest files containing data on experiments in self mated sliding contact of alumina Al2O3 lubricated with either water or paraffin oil. Tests run in variable load/velocity conditions and with different dynamic settings of the test rig (PT-3 tribometer). The aim of the research was to attempt in finding correlations between the dynamic characteristics...
-
DLC coating in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
Imaging of morphological and physicochemical changes occuring in the structure of austenitic steel due to the thermal sensitization
Open Research DataIn polycrystalline materials, grain boundaries are always where phenomena such as surface diffusion, sedimentation and corrosion occur. They have a significant impact on the macroscopic properties of the construction material [1]. In addition to inhomogeneities such as manganese sulphide inclusions formed during the metallurgical process, interfacial...
-
Identification of intermetallic phases in the structure of austenitic steel with use of Scanning Kelvin Probe Microscopy
Open Research DataDelta ferrite is formed in austenitic steels during the solidification of the alloy and its welds. It can also occur as a stable phase in any temperature range in high-alloy austenitic-ferritic steels. Depending on the amount, it can change into gamma and sigma phases and into ferrite with variable chromium content. The main role of delta ferrite in...
-
Sounding rocket temperature and heat transfer data
Open Research DataThis dataset contains temperature and heat transfer data measured during REXUS 25 sounding rocket HEDGEHOG Experiment launched from Esrange Space Centre, Kiruna, Sweden. For experiment details, please see:
-
Thermal behavior of (NH4)V4O10xH2O
Open Research DataThe DataSet contains the results of the thermal behavior of the (NH4)V4O10xH2O obtained by the hydrothermal method using different precursors: microstructured (commercially available) or nanostructured. The information about samples synthesis is described in the Materials.
-
Thermal behaviour of NH4VO3 microcasketoids
Open Research DataThe DataSet contains the results of the thermal behavior of the ammonium metavanadate microcasketoids under argon and nitrogen atmosphere. Thermogravimetric analysis (TG) was carried out under argon or nitrogen atmosphere from 40C to 560C (with a heating rate of 10 C/min) using Netzsch STA 449 F1. The thermal behavior was also studied with mass spectrum...
-
Thermal behaviour of NH4VO3 nanoflowers
Open Research DataThe DataSet contains the results of the thermal behavior of the ammonium metavanadate nanoflowers under argon and nitrogen atmosphere. Thermogravimetric analysis (TG) was carried out under argon or nitrogen atmosphere from 40C to 560C (with a heating rate of 10 C/min) using Netzsch STA 449 F1. The thermal behavior was also studied with mass spectrum...
-
Thermal behaviour of NH4VO3 microflowers
Open Research DataThe DataSet contains the results of the thermal behavior of the ammonium metavanadate microflowers under argon and nitrogen atmosphere. Thermogravimetric analysis (TG) was carried out under argon or nitrogen atmosphere from 40C to 560C (with a heating rate of 10 C/min) using Netzsch STA 449 F1. The thermal behavior was also studied with mass spectrum...
-
AITP - AI Thermal Pedestrians Dataset
Open Research DataAITP is a pedestrian detection dataset consisting of 9178 annotated thermal images. The training set contains 7801 images on which15448 pedestrians were labeled. The test set has 1377 images on which 2731 objects were marked. All images are in PNG file format (120x160) captured with FLIR Lepton Thermal Camera on the streets of Gdańsk, Poland. All pedestrians...
-
Database of the thermal ablation model
Open Research DataThermal ablation is a low invasive technique which eliminates cancerous tissue using high temperature. The presented database was used to show the temperature distribution for t=600[s] in two cases: when the value of the thermal conductivity of tissue k(x;T) is constant and for the variable k(x;T). In addition, using these data we showed the difference...
-
Thermal behaviour of NH4VO3 elongated microcrystals
Open Research DataThe DataSet contains the results of the thermal behavior of the ammonium metavanadate elongated microcrystals under argon and nitrogen atmosphere. Thermogravimetric analysis (TG) was carried out under argon or nitrogen atmosphere from 40C to 560C (with a heating rate of 10 C/min) using Netzsch STA 449 F1. The thermal behavior was also studied with mass...
-
Thermal behaviour of ammonium vanadate nanocrystals
Open Research DataThe DataSet contains the thermal behavior of the ammonium vanadate nanostructures obtained by the hydrothermal method with different conditions. Thermogravimetric analysis (TG) was carried out under an argon atmosphere from 40C to 560C (with a heating rate of 10 C/min) using Netzsch STA 449 F1. The thermal behavior was also studied with mass spectrum...
-
Thermal behaviour of commercial avaible NH4VO3
Open Research DataThe DataSet contains the results of the thermal behavior of the commercially available ammonium metavanadate (CAS 7803-55-6) under argon and nitrogen atmosphere. Thermogravimetric analysis (TG) was carried out under argon or nitrogen atmosphere from 40C to 560C (with a heating rate of 10 C/min) using Netzsch STA 449 F1. The thermal behavior was also...
-
Thermal conductivity of M0-M100 specimens
Open Research DataThermal conductivity and volumetric heat capacity values of M0, M20, M40, M60, M80, M100 samples
-
Thermal behavior of TeOx powder
Open Research DataThe DataSet contains the results of the thermal behavior of the TeOx powder. The material was obtained by the sol-gel method. The starting solution was prepared by mixing telluric acid (precursor) with thetraetylene glycol, water, and ethanol. The sol was obtained by vigorously stirring precursor solution at 50°C for 2h, then the temperature was raised...
-
Force-deformation spectroscopy in contact mode
Open Research DataThe deformation-distance spectroscopic curve is obtained by registering the value of the probe cantilever deflection as a function of the elongation of the piezoelectric scanner. It assumes a simple relationship in the form of Hooke’s law, linking the deformation of the lever with the amount of its deflection caused by the proximity of the probe and...