Filters
total: 142
filtered: 74
Search results for: image classification
-
Behavior Analysis and Dynamic Crowd Management in Video Surveillance System
PublicationA concept and practical implementation of a crowd management system which acquires input data by the set of monitoring cameras is presented. Two leading threads are considered. First concerns the crowd behavior analysis. Second thread focuses on detection of a hold-ups in the doorway. The optical flow combined with soft computing methods (neural network) is employed to evaluate the type of crowd behavior, and fuzzy logic aids detection...
-
A Mammography Data Management Application for Federated Learning
PublicationThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Distributed Framework for Visual Event Detection in Parking Lot Area
PublicationThe paper presents the framework for automatic detection of various events occurring in a parking lot basing on multiple camera video analysis. The framework is massively distributed, both in the logical and physical sense. It consists of several entities called node stations that use XMPP protocol for internal communication and SRTP protocol with Jingle extension for video streaming. Recognized events include detecting parking...
-
Seafloor Characterisation Using Underwater Acoustic Devices
PublicationThe problem of seafloor characterisation is important in the context of management as well as investigation and protection of the marine environment. In the first part of the paper, a review of underwater acoustic technology and methodology used in seafloor characterisation is presented. It consists of the techniques based on the use of singlebeam echosounders and seismic sources, along with those developed for the use of sidescan...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
The Application of Satellite Image Analysis in Oil Spill Detection
PublicationIn recent years, there has been an increasing use of satellite sensors to detect and track oil spills. The satellite bands, namely visible, short, medium infrared, and microwave radar bands, are used for this purpose. The use of satellite images is extremely valuable for oil spill analysis. With satellite images, we can identify the source of leakage and assess the extent of potential damage. However, it is not yet clear how to...
-
Badanie stanu nawierzchni drogowej z wykorzystaniem uczenia maszynowego
PublicationW artykule opisano budowę systemu informowania o stanie nawierzchni drogowej z wykorzystaniem metod cyfrowego przetwarzania obrazów oraz uczenia maszynowego. Efektem wykonanych prac badawczych jest eksperymentalna platforma, pozwalająca na rejestrację uszkodzeń na drogach, system do analizy, przetwarzania i klasyfikacji danych oraz webowa aplikacja użytkownika do przeglądu stanu nawierzchni w wybranej lokalizacji.
-
Video content analysis in the urban area telemonitoring system
PublicationThe task of constant monitoring of video streams from a large number of cameras and reviewing the recordings in order to find a specified event requires a considerable amount of time and effort from the system operators and it is prone to errors. A solution to this problem is an automatic system for constant analysis of camera images being able to raise an alarm if a predefined event is detected. The chapter presents various aspects...
-
Seafloor Characterisation and Imaging Using Multibeam Sonar Data
PublicationThe approach to seafloor characterisation and imaging is presented. It relies on the combined, concurrent use of several techniques of multibeam sonar data processing. The first one is based on constructing the grey-level sonar images of seabed using the backscattering strength calculated for the echoes received in the consecutive beams. Then, the set of parameters describing the local region of sonar image is calculated. The second...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Evaluation of a company’s image on social media using the Net Sentiment Rate
PublicationVast amounts of new types of data are constantly being created as a result of dynamic digitization in all areas of our lives. One of the most important and valuable categories for business is data from social networks such as Facebook. Feedback resulting from the sharing of thoughts and emotions, expressed in comments on various products and services, is becoming the key factor on which modern business is based. This feedback is...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublicationThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Bimodal classification of English allophones employing acoustic speech signal and facial motion capture
PublicationA method for automatic transcription of English speech into International Phonetic Alphabet (IPA) system is developed and studied. The principal objective of the study is to evaluate to what extent the visual data related to lip reading can enhance recognition accuracy of the transcription of English consonantal and vocalic allophones. To this end, motion capture markers were placed on the faces of seven speakers to obtain lip...
-
Estimation of object size in the calibrated camera image = Estymacja rozmiaru obiektów w obrazach ze skalibrowanej kamery
PublicationIn the paper, a method of estimation of the physical sizes of the objects tracked by the camera is presented. First, the camera is calibrated, then the proposed algorithm is used to estimate the real width and height of the tracked moving objects. The results of size estimation are then used for classification of the moving objects. Two methods of camera calibration are compared, test results are presented and discussed. The proposed...
-
Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. A case study from the Slupsk Bank, Southern Baltic Sea
PublicationBenthic habitat mapping is a rapidly growing field of underwater remote sensing studies. This study provides the first insight for high-resolution hydroacoustic surveys in the Slupsk Bank Natura 2000 site, one of the most valuable sites in the Polish Exclusive Zone of the Southern Baltic. This study developed a quick and transparent, automatic classification workflow based on multibeam echosounder and side-scan sonar surveys to...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublicationIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublicationMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublicationMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
The effect of impacted third molars on second molar external root resorption, a cross-sectional cone beam computed tomography study
PublicationBackground: Third molars have the highest prevalence of impaction in teeth and can cause pathological damage on the adjacent second molars. This study aims to evaluate the effects of factors related to impacted third molars on external root resorption (ERR) in adjacent second molars using cone-beam computed tomography (CBCT). Material and Methods: In CBCTs, the effect of impacted third molars on the root surface of adjacent second...
-
Color-based Detection of Bleeding in Endoscopic Images
PublicationIn this paper a color descriptor designed for bleeding detection in endoscopic images is proposed. The development of the algorithm was carried out on a representative training set of 36 images of bleeding and 25 clear images. Another 38 bleeding and 26 normal images were used in the final stage as a test set. All of the considered images were extracted from separate endoscopic examinations. The experiments include color distribution...
-
Accelerating Video Frames Classification With Metric Based Scene Segmentation
PublicationThis paper addresses the problem of the efficient classification of images in a video stream in cases, where all of the video has to be labeled. Realizing the similarity of consecutive frames, we introduce a set of simple metrics to measure that similarity. To use these observations for decreasing the number of necessary classifications, we propose a scene segmentation algorithm. Performed experiments have evaluated the acquired...
-
Improving methods for detecting people in video recordings using shifting time-windows
PublicationWe propose a novel method for improving algorithms which detect the presence of people in video sequences. Our focus is on algorithms for applications which require reporting and analyzing all scenes with detected people in long recordings. Therefore one of the target qualities of the classification result is its stability, understood as a low number of invalid scene boundaries. Many existing methods process images in the recording...
-
The Impact of Spatiotemporal Changes in Land Development (1984–2019) on the Increase in the Runoff Coefficient in Erbil, Kurdistan Region of Iraq
PublicationNowadays, geospatial techniques are a popular approach for estimating urban flash floods by considering spatiotemporal changes in urban development. In this study, we investigated the impact of Land Use/Land Cover (LULC) changes on the hydrological response of the Erbil basin in the Kurdistan Region of Iraq (KRI). In the studied area, the LULC changes were calculated for 1984, 1994, 2004, 2014 and 2019 using the Digital Elevation...