Filters
total: 179
filtered: 173
-
Catalog
Chosen catalog filters
Search results for: THERMAL EFFICIENCY
-
Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective
PublicationThe mission of an advanced epoxy-based nanocomposite coating is to provide a given substrate with protection against an unwelcome guest; e.g. corrosive molecules/media, environmental stress, flame, thermal degradation or microorganisms. In such systems, the degree to which superior properties can be guaranteed depends on the state of network formation in the epoxy in the presence of nanoparticles. For low-filled epoxy nanocomposite coatings,...
-
Investigating the combined impact of plasticizer and shear force on the efficiency of low temperature reclaiming of ground tire rubber (GTR)
PublicationIn the present work, ground tire rubber (GTR) was mechano-chemically reclaimed at ambient temperature using two-roll mills. Road bitumen and styrene-butadiene-styrene (SBS)-modified bitumen at variable content (in range: 2.5–20 phr) were applied as reactive plasticizers to enhance reclaiming of GTR. For better understanding the plasticizing effect of bitumen on the quality of obtained reclaimed rubber, mechano-chemically reclaimed...
-
Thermomechanical and Fire Properties of Polyethylene-Composite-Filled Ammonium Polyphosphate and Inorganic Fillers: An Evaluation of Their Modification Efficiency
PublicationThe development of new polymer compositions characterized by a reduced environmental impact while lowering the price for applications in large-scale production requires the search for solutions based on the reduction in the polymer content in composites’ structure, as well as the use of fillers from sustainable sources. The study aimed to comprehensively evaluate introducing low-cost inorganic fillers, such as copper slag (CS),...
-
Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
PublicationThe ship power plants (SPP) are generally based on Diesel engines. Their fuel efficiency is gradually sensible to cyclic air temperatures and drops with their rise. A sustainable performance of ship engines with high fuel efficiency is possible by cooling intake and charge air as two objects in waste heat conversion chillers. The peculiarities of marine engine application are associated with constrained space of machine room. Whereas,...
-
A novel degree-hour method for rational design loading
PublicationCooling degree-hours (CDH) received the broadest application in evaluation of the ambient air cooling efficiency in power engineering (engine intake air cooling systems) and air conditioning. The current CDH numbers are defined as a drop in air temperature multiplied by associated time duration of performance and their summarized annual number is used to estimate the annual effect achieved due to sucked air cooling in power plants...
-
Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator
PublicationEnergy efficiency enhancement methods have received considerable attentionwithin the industry and scientific community, owing to the rising concern ofglobal energy sustainability. The present article attempts to scrutinize the effectsof electrohydrodynamics and nanofluids on the rate of heat transfer and fluidflow in the 3-D chain microchannels. Improved heat exchangers (e.g., chainmicrochannel) would have a key role in increasing...
-
Numerical model for thin liquid film with evaporation and condensation on solid surfaces in systems with conjugated heat transfer
PublicationCondensation and evaporation processes from wetted surfaces are of utmost importance in many technological or industrial applications. In many devices such as home-appliances and air conditioning systems just to name a few, condensation and evaporation processes greatly impact their performance and energy efficiency; The physics of these processes is quite complex, involving conjugate heat transfer among solid–liquid film-gaseous...
-
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
PublicationThe application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire...
-
Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode
PublicationConventional fossil fuels are being substituted with alternative green fuels because of their greenhouse gas emissions and pollution problems, which pose a severe threat to the environment. Several studies have reported the usage of biodiesel and gaseous fuels in both single and dual-fuel modes. Gaseous fuels such as producer gas, biogas, syngas, and hydrogen produced from renewable biomass could potentially be used along with...
-
Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe
PublicationThe paper deals with the important challenges in terms of electricity transmission by means of underground cable lines. The power cable’s performance is characterized by an ampacity that represents its maximum electric current-carrying capacity. The ampacity of power cables depends on their ability to diffuse the heat generated by the current flow into the environment. In the performed research, the analysis of the efficiency of...
-
Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments
PublicationCarbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modi- fication processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased...
-
Isolation of Bacteriocin-producing Staphylococcus spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis
PublicationA collection of 206 Staphylococcus spp. isolates was investigated for their ability to produce compounds exhibiting antistaphylococcal activity. This group included Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus xylosus strains recovered from bovine mastitis (n = 158) and human skin wounds and soft tissues infections (n = 48). Production of substances with antimicrobial activity was observed in six strains. Five...
-
Low temperature rotary Stirling engine: conceptual design and theoretical analysis
PublicationThe use of low-temperature energy sources for electricity generation demands a dual focus: a substantial enhancement in the efficiency of energy conversion devices and a reduction in system production costs. Particularly in scenarios where low-temperature energy sources are scarce, this factor can be pivotal in facilitating widespread adoption of such technologies. The Stirling engine emerges as a promising solution capable of...
-
Analysis of cyclone separator solutions depending on spray ejector condenser conditions
PublicationThe core design strategy for minimizing CO2 emissions in gas power plant entails combining a spray ejector condenser (SEC) and separator to accomplish steam condensation and CO2 purification. This innovative process involves direct-contact condensation of steam with CO2, facilitated by interaction with a subcooled water spray, along with a cyclone separator mechanism intended for generating pure CO2. The investigation of the SEC...
-
Thermodynamic and geometrical characteristics of mixed convection heat transfer in the shell and coil tube heat exchanger with baffles
PublicationThe article presents passive heat transfer enhancement method in the form of baffles to increase the energy efficiency of the shell coil heat exchanger. Conducted literature review shows that, despite numer- ous studies, there is little work on the intensification of heat transfer at the shell side. Most of the work focuses on the impact of geometrical parameters of the coil itself. This article successfully proves that it is possible...
-
Modelling and analysis of medium frequency transformers for power converters
PublicationThe evolutions in power systems and electric vehicles, related to the economic opportunities and the environmental issues, bring the need of high power galvanically isolated DC-DC converter. The medium frequency transformer (MFT) is one of its key components, enabled by the increasing switching frequency of modern power semiconductors like silicon carbide transistors or diodes. The increased operating frequency offers small...
-
Fuzzy logic-supported building design for low-energy consumption in urban environments
PublicationClimate, building materials, occupancy patterns, and HVAC (heating, ventilation, and air conditioning) systems all interact in complex ways, making it difficult to design low-energy buildings. Thus, innovative architectural and engineering design strategies are required to meet the worldwide need to decrease building energy usage. To improve the calculation of energy consumption of buildings, this work introduces the FCR-BCS (fuzzy...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublicationInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Applicability of arrays of microjets heat transfer correlations to design compact heat exchangers
PublicationThe article presents experimental studies on a compact heat exchanger with heat transfer intensification by means of impinging microjets. The pursuit to provide high performance of heat exchangers is a response to the demand both in economics and in the universal tendency to miniaturization of industrial equipment. This paper presents the design and tests of a prototype, microjet heat exchanger. The modular design of the heat exchanger...
-
Desirability-based optimization of dual-fuel diesel engine using acetylene as an alternative fuel
Publicationhe study examined the dual-fuel engine performance employing acetylene gas as primary fuel and diesel as pilot fuel. The engine's operational parameters were adjusted using the Box-Behnken design, and the results were recorded. The best operating settings were yielded as 81.25 % engine load, 4.48 lpm acetylene gas flow rate and the compression ratio were 18. At this optimized setting the BTE was 27.1 % and the engine emitted 360...
-
Window frame integrable air recuperation minichannel/minigap heat exchanger
PublicationThis article describes an evaluation of mini heat exchangers operation as a decentralized mechanical ventilation system with recuperative heat recovery that can be integrated into the window frame. The relatively small yet efficient air recuperation system allows for retrofitting existing buildings by reducing the overall energy consumption and thus the CO2 emissions. The proposed design, unlike existing systems, is easy to scale...
-
Flow distribution and heat transfer in minigap and minichannel heat exchangers during flow boiling
PublicationThe topic of boiling heat transfer in miniscale geometries has focused the ever increasing interest of researchers in recent years. However, most of the works are related to mini- and microchannels and much less to minigaps. Meanwhile, minigaps allow for more comprehensive experimental studies, i.e. flow visualisations due to the flat, two-dimensional configuration of the flow. The results of the experimental investigations of...
-
Analysis of Organic Rankine Cycle efficiency and vapor generator heat transfer surface in function of the reduced pressure
PublicationIn the paper presented is analysis of the influence of reduced pressure on efficiency and heat transfer area of vapor generator of Organic Rankine Cycle (ORC) in case of subcritical and supercritical parameters of operation. Compared are two cases of subcritical and supercritical ORC featuring a similar arrangement of heat source supply and heat removal, that is featuring the same temperatures of working fluid before the turbine,...