Filters
total: 1163
filtered: 837
Search results for: NONSTATIONARY MULTIVARIATE SIGNALS
-
On Noncausal Identification of Nonstationary Multivariate Autoregressive Processes
PublicationThe problem of identification of nonstationary multivariate autoregressive processes using noncausal local estimation schemes is considered and a new approach to joint selection of the model order and the estimation bandwidth is proposed. The new selection rule, based on evaluation of pseudoprediction errors, is compared with the previously proposed one, based on the modified Akaike’s final prediction error criterion.
-
Transmission of digital signals in a nonstationary hydroacoustic channel.
PublicationZ telekomunikacyjnego punktu widzenia właściwości transmisyjne kanału hydroakustyczny są ograniczone przez występowanie wielokrotnych odbić fali dźwiękowej od dna i powierzchni wody oraz niestacjonarność wprowadzaną głównie przez ruch powierzchni wody. Artykuł przedstawia model własności transmisyjnych kanału. Wprowadzono niestacjonarność do odpowiedzi impulsowych kanału przez założenie przypadkowej zmienności czasów przyjścia...
-
ESTIMATION OF NONSTATIONARY HARMONIC SIGNALS AND ITS APPLICATION TO ACTIVE CONTROL OF MRI NOISE
PublicationA new adaptive comb filtering algorithm, capable of tracking the fundamental frequency and amplitudes of different frequency components of a nonstationary harmonic signal embedded in white measurement noise, is proposed. Frequency tracking characteristics of the new scheme are studied analytically, proving (under Gaussian assumptions and optimal tuning) its statistical efficiency for quasi-linear frequency changes. Laboratory tests...
-
New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications
PublicationThis paper deals with the problem of localization of impulsive disturbances in nonstationary multivariate signals. Both unidirectional and bidirectional (noncausal) detection schemes are proposed. It is shown that the strengthened pulse detection rule, which combines analysis of one-step-ahead signal prediction errors with critical evaluation of leave-one-out signal interpolation errors, allows one to noticeably improve detection results...
-
Identification of nonstationary multivariate autoregressive processes– Comparison of competitive and collaborative strategies for joint selection of estimation bandwidth and model order
PublicationThe problem of identification of multivariate autoregressive processes (systems or signals) with unknown and possibly time-varying model order and time-varying rate of parameter variation is considered and solved using parallel estimation approach. Under this approach, several local estimation algorithms, with different order and bandwidth settings, are run simultaneously and compared based on their predictive performance. First,...
-
Lattice filter based multivariate autoregressive spectral estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a multivariate nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running...
-
Regularized Local Basis Function Approach to Identification of Nonstationary Processes
PublicationThe problem of identification of nonstationary stochastic processes (systems or signals) is considered and a new class of identification algorithms, combining the basis functions approach with local estimation technique, is described. Unlike the classical basis function estimation schemes, the proposed regularized local basis function estimators are not used to obtain interval approximations of the parameter trajectory, but provide...
-
Locally Adaptive Cooperative Kalman Smoothing and Its Application to Identification of Nonstationary Stochastic Systems
PublicationOne of the central problems of the stochastic approximation theory is the proper adjustment of the smoothing algorithm to the unknown, and possibly time-varying, rate and mode of variation of the estimated signals/parameters. In this paper we propose a novel locally adaptive parallel estimation scheme which can be used to solve the problem of fixed-interval Kalman smoothing in the presence of model uncertainty. The proposed solution...
-
Generalized adaptive comb filters/smoothers and their application to the identification of quasi-periodically varying systems and signals
PublicationThe problem of both causal and noncausal identification of linear stochastic systems with quasiharmonically varying parameters is considered. The quasi-harmonic description allows one to model nonsinusoidal quasi-periodic parameter changes. The proposed identification algorithms are called generalized adaptive comb filters/smoothers because in the special signal case they reduce down to adaptive comb algorithms used to enhance...
-
A self-optimization mechanism for generalized adaptive notch smoother
PublicationTracking of nonstationary narrowband signals is often accomplished using algorithms called adaptive notch filters (ANFs). Generalized adaptive notch smoothers (GANSs) extend the concepts of adaptive notch filtering in two directions. Firstly, they are designed to estimate coefficients of nonstationary quasi-periodic systems, rather than signals. Secondly, they employ noncausal processing, which greatly improves their accuracy and...
-
On adaptive covariance and spectrum estimation of locally stationary multivariate processes
PublicationWhen estimating the correlation/spectral structure of a locally stationary process, one has to make two important decisions. First, one should choose the so-called estimation bandwidth, inversely proportional to the effective width of the local analysis window, in the way that complies with the degree of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive...
-
Tensor Decomposition for Imagined Speech Discrimination in EEG
PublicationMost of the researches in Electroencephalogram(EEG)-based Brain-Computer Interfaces (BCI) are focused on the use of motor imagery. As an attempt to improve the control of these interfaces, the use of language instead of movement has been recently explored, in the form of imagined speech. This work aims for the discrimination of imagined words in electroencephalogram signals. For this purpose, the analysis of multiple variables...
-
Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems
PublicationIn this paper, a novel multivariate active noise control scheme, designed to attenuate disturbances with high autocorrelation characteristics and preserve background signals, is proposed. The algorithm belongs to the class of feedback controllers and, unlike the popular feedforward FX-LMS approach, does not require availability of a reference signal. The proposed approach draws its inspiration from the iterative learning control...
-
Bearing estimation using double frequency reassignment for a linear passive array
PublicationThe paper demonstrates the use of frequency reassignment for bearing estimation. For this task, signals derived from a linear equispaced passive array are used. The presented method makes use of Fourier transformation based spatial spectrum estimation. It is further developed through the application of two-dimensional reassignment, which leads to obtaining highly concentrated energy distributions in the joint frequency-angle domain...
-
Multichannel self-optimizing narrowband interference canceller
PublicationThe problem of cancellation of a nonstationary sinusoidal interference, acting at the output of an unknown multivariable linear stable plant, is considered. No reference signal is assumed to be available. The proposed feedback controller is a nontrivial extension of the SONIC (self-optimizing narrowband interference canceller) algorithm, developed earlier for single-input, single-output plants. The algorithm consists of two loops:...
-
Chemometric Assessment and Best-Fit Function Modelling of the Toxic Potential of Selected Food Packaging Extracts
PublicationFood packaging materials constitute an ever more threatening environmental pollutant. This study examined options to specifically assess the ecotoxicity of packaged wastes, such as cans, subjected to various experimental treatments (in terms of extraction media, time of exposure, and temperature) that imitate several basic conditions of the process of food production. The extracts were studied for their ecotoxicity with bioluminescent...
-
Broken Rotor Symptons in the Sensorless Control of Induction Machine
PublicationInverter fed sensorless controlled variable speed drives with induction machine are widely used in the industry applications, also in wind power generation and electric vehicles. On-line self diagnostic systems implementation is needed for early stage fault detection and avoiding a critical fault. Diagnostic algorithms in modern DSP-based controllers can operate simultaneously with control system functions. In the closed-loop controlled...
-
Towards Robust Identification of Nonstationary Systems
PublicationThe article proposes a fast, two-stage method for the identification of nonstationary systems. The method uses iterative reweighting to robustify the identification process against the outliers in the measurement noise and against the numerical errors that may occur at the first stage of identification. We also propose an adaptive algorithm to optimize the values of the hyperparameters that are crucial for this new method.
-
Generalized Savitzky–Golay filters for identification of nonstationary systems
PublicationThe problem of identification of nonstationary systems using noncausal estimation schemes is consid-ered and a new class of identification algorithms, combining the basis functions approach with localestimationtechnique,isdescribed.Unliketheclassicalbasisfunctionestimationschemes,theproposedlocal basis function estimators are not used to obtain interval approximations of the parametertrajectory, but provide a sequence of point...
-
On noncausal identification of nonstationary stochastic systems
PublicationIn this paper we consider the problem of noncausal identification of nonstationary,linear stochastic systems, i.e., identification based on prerecorded input/output data. We show how several competing weighted least squares parameter smoothers, differing in memory settings, can be combined together to yield a better and more reliable smoothing algorithm. The resulting parallel estimation scheme automatically adjusts its smoothing...
-
Application of Multivariate Analysis Methods in Welding Engineering
PublicationPhenomena and processes taking place during welding are usually very complex and, for this reason, should be described using multivariate methods. The article discusses the methodological basis and selected application areas as regards the solving of welding problems using statistical multivariate methods. In addition, the article presents exemplary applications of the design of experiment, multiple regression analysis, cluster...
-
On the preestimation technique and its application to identification of nonstationary systems
PublicationThe problem of noncausal identification of a nonstationary stochastic FIR (finite impulse response) sys- tem is reformulated, and solved, as a problem of smoothing of preestimated parameter trajectories. Three approaches to preestimation are critically analyzed and compared. It is shown that optimization of the smoothing operation can be performed adaptively using the parallel estimation technique. The new approach is computationally...
-
Local basis function estimators for identification of nonstationary systems
PublicationThe problem of identification of a nonstationary stochastic system is considered and solved using local basis function approximation of system parameter trajectories. Unlike the classical basis function approach, which yields parameter estimates in the entire analysis interval, the proposed new identification procedure is operated in a sliding window mode and provides a sequence of point (rather than interval) estimates. It is...
-
Identification of nonstationary processes using noncausal bidirectional lattice filtering
PublicationThe problem of off-line identification of a nonstationary autoregressive process with a time-varying order and a time-varying degree of nonstationarity is considered and solved using the parallel estimation approach. The proposed parallel estimation scheme is made up of several bidirectional (noncausal) exponentially weighted lattice algorithms with different estimation memory and order settings. It is shown that optimization of...
-
On noncausal weighted least squares identification of nonstationary stochastic systems
PublicationIn this paper, we consider the problem of noncausal identification of nonstationary, linear stochastic systems, i.e., identification based on prerecorded input/output data. We show how several competing weighted (windowed) least squares parameter smoothers, differing in memory settings, can be combined together to yield a better and more reliable smoothing algorithm. The resulting parallel estimation scheme automatically adjusts...
-
Local basis function method for identification of nonstationary systems
PublicationThis thesis is focused on the basis function method for the identification of nonstationary processes. The first chapter describes a group of models that can be identified using the basis function method. The next chapter describes the basic version of the basis function method, including its algebraic and statistical properties. The following section introduces the local basis function (LBF) method: its properties are described...
-
On joint order and bandwidth selection for identification of nonstationary autoregressive processes
PublicationWhen identifying a nonstationary autoregressive process, e.g. for the purpose of signal prediction or parametric spectrum estimation, two important decisions must be taken. First, one should choose the appropriate order of the autoregressive model, i.e., the number of autoregressive coefficients that will be estimated. Second, if identification is carried out using the local estimation technique, such as the localized version of...
-
Using Physiological Signals for Emotion Recognition
PublicationRecognizing user’s emotions is the promising area of research in a field of human-computer interaction. It is possible to recognize emotions using facial expression, audio signals, body poses, gestures etc. but physiological signals are very useful in this field because they are spontaneous and not controllable. In this paper a problem of using physiological signals for emotion recognition is presented. The kinds of physiological...
-
Emotion Recognition Using Physiological Signals
PublicationIn this paper the problem of emotion recognition using physiological signals is presented. Firstly the problems with acquisition of physiological signals related to specific human emotions are described. It is not a trivial problem to elicit real emotions and to choose stimuli that always, and for all people, elicit the same emotion. Also different kinds of physiological signals for emotion recognition are considered. A set of...
-
On Adaptive Spectrum Estimation of Multivariate Autoregressive Locally Stationary Processes
PublicationAutoregressive modeling is a widespread parametricspectrum estimation method. It is well known that, in the caseof stationary processes with unknown order, its accuracy canbe improved by averaging models of different complexity usingsuitably chosen weights. The paper proposes an extension of thistechnique to the case of multivariate locally stationary processes.The proposed solution is based on local autoregressive...
-
Silence/noise detection for speech and music signals
PublicationThis paper introduces a novel off-line algorithm for silence/noise detection in noisy signals. The main concept of the proposed algorithm is to provide noise patterns for further signals processing i.e. noise reduction for speech enhancement. The algorithm is based on frequency domain characteristics of signals. The examples of different types of noisy signals are presented.
-
Laboratory Stand for Wideband Analysis Radiocommunication Signals
PublicationA laboratory stand for wideband analysis radiocommunication signals is presented in the paper. The stand is designed for signals acquisition in wide spectrum and research a field of digital signal processing. Procedures used for simultaneous acquiring many frequency channels in selected wide band are described. The method of detection of direct sequence spread spectrum signals (DS SS) which power spectral density is lower than...
-
Laboratory stand for wideband analysis radiocommunication signals
PublicationA laboratory stand for wideband analysis radiocommunication signals is presented in the paper. The stand is designed for signals acquisition in wide spectrum and research a field of digital signal processing. Procedures used for simultaneous acquiring many frequency channels in selected wide band are described. The method of detection of direct sequence spread spectrum signals (DS SS) which power spectral density is lower than...
-
Nonstationary Pharmacokinetics of Caspofungin in ICU Patients
Publication -
Application of multivariate statistics in assessment of green analytical chemistry parameters of analytical methodologies
PublicationThe study offers a multivariate statistical analysis of a dataset, including the major metrological, “greenness” and methodological parameters of 43 analytical methodologies applied for aldrin determination (a frequently analyzed organic compound) in water samples. The variables (parameters) chosen were as follows: metrological (LOD, recovery, RSD), describing the “greenness” (amount of the solvent used, amount of waste generated)...
-
Detection Range of Intercept Sonar for CWFM Signals
PublicationStealth in military sonars applications may be ensured through the use of low power signals making them difficult to intercept by the enemy. In recent years, silent sonar design has been investigated by the Department of Marine Electronic Systems of the Gdansk University of Technology. This article provides an analysis of how an intercept sonar operated by the enemy can detect silent sonar signals. To that end a theoretical intercept...
-
New approach to noncausal identification of nonstationary stochastic systems subject to both smooth and abrupt parameter changes
PublicationIn this paper we consider the problem of finiteintervalparameter smoothing for a class of nonstationary linearstochastic systems subject to both smooth and abrupt parameterchanges. The proposed parallel estimation scheme combines theestimates yielded by several exponentially weighted basis functionalgorithms. The resulting smoother automatically adjustsits smoothing bandwidth to the type and rate of nonstationarityof the identified...
-
Selection of excitation signals for high-impedance spectroscopy
PublicationA method of fast impedance spectroscopy of technical objects with high impedance (|Zx| > 1 GOhm) is evaluated in this paper. An object is excited with a signal generated by a digital-to-analog converter (DAC) located on the U2531A DAQ module. Response signals proportional to current flowing through and voltage across the measured object are sampled by analog-to-digital converters (ADC) in the DAQ module. The object impedance spectrum...
-
Detection of impulsive disturbances in archive audio signals
PublicationIn this paper the problem of detection of impulsive disturbances in archive audio signals is considered. It is shown that semi-causal/noncausal solutions based on joint evaluation of signal prediction errors and leave-one-out signal interpolation errors, allow one to noticeably improve detection results compared to the prediction-only based solutions. The proposed approaches are evaluated on a set of clean audio signals contaminated...
-
Multivariate analysis of impedance data obtained for coating systems of varying thickness applied on steel
PublicationElectrochemical impedance spectroscopy (EIS) has proven to be a valuable test method for the electrochemical characterization of protective coatings on metals. The common way of analysis in impedance spectroscopy is to model the impedance spectrum by means of an equivalent circuit and to extract the quantity of interest using optimization techniques. A model, corresponding to the behavior of the sample under testing, is important...
-
Silent Signals The Covert Network Shaping the Future
PublicationSilent Signals The Covert Network Shaping the Future In a world dominated by information flow and rapid technological advancements, the existence of hidden networks and unseen influences has never been more relevant. "Silent Signals: The Covert Network Shaping the Future" delves deep into the mysterious and often opaque world of covert communication networks. This influential work sheds light on the silent...
-
Regularized Local Multivariate Reduced-Order Models With Nonaffine Parameter Dependence
PublicationThis paper addresses a singular problem, not yet discussed in the literature, which occurs when parametric reduced-order models are created using a subspace projection approach with multiple concatenated projection bases. We show that this technique may lead to the appearance of localized artifacts in the frequency characteristics of a system, even when the reduced-order projection basis is rich enough to describe the original...
-
Identification of models and signals robust to occasional outliers
PublicationIn this paper estimation algorithms derived in the sense of the least sum of absolute errors are considered for the purpose of identification of models and signals. In particular, off-line and approximate on-line estimation schemes discussed in the work are aimed at both assessing the coefficients of discrete-time stationary models and tracking the evolution of time-variant characteristics of monitored signals. What is interesting,...
-
Identification of models and signals robust to occasional outliers
PublicationIn this paper estimation algorithms derived in the sense of the least sum of absolute errors are considered for the purpose of identification of models and signals. In particular, off-line and approximate on-line estimation schemes discussed in the work are aimed at both assessing the coefficients of discrete-time stationary models and tracking the evolution of time-variant characteristics of monitored signals. What is interesting,...
-
Wavelet filtering of signals without using model functions
PublicationThe effective wavelet filtering of real signals is impossible without determining their shape. The shape of a real signal is related to its wavelet spectrum. For shape analysis, a continuous color wavelet spectrogram of signal level is often used. The disadvantage of continuous wavelet spectrogram is the complexity of analyzing a blurry color image. A real signal with additive noise strongly distorts the spectrogram based on continuous...
-
New Approach to Noncasual Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes
PublicationIn this technical note, we consider the problem of finite-interval parameter smoothing for a class of nonstationary linear stochastic systems subject to both smooth and abrupt parameter changes. The proposed parallel estimation scheme combines the estimates yielded by several exponentially weighted basis function algorithms. The resulting smoother automatically adjusts its smoothing bandwidth to the type and rate of nonstationarity...
-
Detection of the Direct Sequence Spread Spectrum Signals with BPSK Modulation
PublicationThis paper presents a method of the DS CDMA signals with BPSK modulation detection through the examination of the enhanced signal spectrum density. On the base of experiments carried out on the real radio communication signals the impact of a narrowband emission occurring in the examined frequency band on the detection process effectiveness was shown. The results of the experiment aimed at the detection of the satellite navigation...
-
On the instantaneous frequency smoothing for signals with quasi-linear frequency changes
PublicationThe problem of estimation of the slowly-varying instantaneous frequency of a nonstationary complex sinusoidal signal buried in noise is considered. This problem is usually solved using frequency tracking algorithms. It is shown that the accuracy of frequency estimates can be considerably increased if the results yielded by the frequency tracker are further processed using the appropriately designed filters. The resulting frequency...
-
A new look at the statistical identification of nonstationary systems
PublicationThe paper presents a new, two-stage approach to identification of linear time-varying stochastic systems, based on the concepts of preestimation and postfiltering. The proposed preestimated parameter trajectories are unbiased but have large variability. Hence, to obtain reliable estimates of system parameters, the preestimated trajectories must be further filtered (postfiltered). It is shown how one can design and optimize such...
-
Active Suppression of Nonstationary Narrowband Acoustic Disturbances
PublicationIn this chapter, a new approach to active narrowband noise control is presented. Narrowband acoustic noise may be generated, among others, by rotating parts of electro-mechanical devices, such as motors, turbines, compressors, or fans. Active noise control involves the generation of “antinoise”, i.e., the generation of a sound that has the same amplitude, but the opposite phase, as the unwanted noise, which causes them to interfere...