Filters
total: 14
filtered: 12
Chosen catalog filters
Search results for: POLYISOCYANURATE
-
Effect of bio-polyol molecular weight on the structure and properties of polyurethane-polyisocyanurate (PUR-PIR) foams
PublicationThe increasing interest in polyurethane materials has raised the question of the environmental impact of these materials. For this reason, the scientists aim to find an extremely difficult balance between new material technologies and sustainable development. This work attempts to validate the possibility of replacing petrochemical polyols with previously synthesized bio-polyols and their impact on the structure and properties...
-
Effect of bio-polyol molecular weight on the structure and properties of polyurethane-polyisocyanurate (PUR-PIR) foams
Publication -
The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams
PublicationIn this work, biopolyol obtained from two types of industrial crops’ processing products: crude glycerol and castor oil was used for preparation or rigid polyurethane-polyisocyanurate foams. Bio-based polyol was obtained via crude glycerol polymerization and further condensation of resulting polyglycerol with castor oil. Rigid polyurethane-polyisocyanurate foams were prepared at partial substitution (0–70 wt.%) of petrochemical...
-
Performance properties of rigid polyurethane-polyisocyanurate/brewers’ spent grain foamed composites as function of isocyanate index
PublicationIn the presented work, rigid polyurethane-polyisocyanurate (PUR-PIR) foams filled with brewers’ spent grain (BSG) were prepared. The influence of the isocyanate index (II) on its performance was investigated. Foams obtained with higher isocyanate index required a higher amount of hydrofluorocarbon physical blowing agent to provide the same apparent density of material. An increase of isocyanate index resulted in a slight decrease...
-
Structure, Mechanical, Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams
PublicationIn this work, rigid polyisocyanurate foams were prepared at partial substitution (0–70 wt%) of commercially available petrochemical polyol, with previously synthesized biopolyol based on crude glycerol and castor oil. Influence of the biopolyol content on morphology, chemical structure, static and dynamic mechanical properties, thermal insulation properties, thermal stability and flammability was investigated. Incorporation of...
-
The Influence of Substitution of a Phosphorus-Containing Polyol with the Bio-polyol on the Properties of Bio-based PUR/PIR Foams
PublicationIn this work, effects of incorporating of a phosphorus-containing polyol into rigid polyurethane/polyisocyanurate foams’ formulations developed with use of two different bio-based polyols, derived from crude glycerol or liquefied cellulose were examined. The bio-polyol derived from crude glycerol was synthesized via two-step process from crude glycerol and castor oil, whereas the bio-polyol derived from liquefied cellulose was...
-
Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol
PublicationThe paper describes the preparation and characterization of rigid polyurethane-polyisocyanurate (PUR-PIR) foams obtained with biopolyol synthesized in the process of liquefaction of biomass from the Baltic Sea. The obtained foams differed in the content of biopolyol in polyol mixture (0–30 wt%) and the isocyanate index (IISO = 200, 250, and 300). The prepared foams were characterized in terms of processing parameters (processing...
-
Preparation and characterization of rigid polyurethane-polyglycerolnanocomposite foams
PublicationThis work reports on the preparation of polyurethane-polyisocyanurate (PUR-PIR) foams containing different polyglycerols and layered silicate nanoclays. The rigid polyurethane foams were obtained in a laboratory scale, in a single step method, from a two-component system with a NCO to OH groups ratio equal to two. The reaction mixture consisted of the proper amounts of a commercial oligoetherpolyol, polyglycerol, catalysts, water,...
-
Preparation and characterization of rigid polyurethane -polyglycerol nanocomposite foams
PublicationThis work reports on the preparation of polyurethane–polyisocyanurate (PUR–PIR) foams containing different polyglycerols and layered silicate nanoclays. The rigid polyurethane foams were obtained in a laboratory scale, in a single step method, from a two-component system with a NCO to OH groups ratio equal to two. The reaction mixture consisted of the proper amounts of a commercial oligoetherpolyol, polyglycerol, catalysts, water,...
-
Physico‐Mechanical Properties and Flammability of PUR/PIR Foams Containing Expandable Graphite Core‐Shell Composite Particles
PublicationIn this work, polyurethane/polyisocyanurate (PUR/PIR) foams were modified by two types of expandable graphite (EG) core-shell composite particles. The pulverized EG core-shell composite particles were prepared during emulsion polymerization using methyl methacrylate or glycidyl methacrylate for the synthesis of the polymeric shells (poly(methyl methacrylate) (PMMA) and poly (glycidyl methacrylate) (PGMA)), and then the obtained EG_PMMA...
-
Enhancement of PUR/PIR foam thermal stability after addition of Zostera marina biomass component investigated via thermal analysis and isoconversional kinetics
PublicationIn the present work, a thorough thermogravimetric (TG) analysis of bio-based polyurethane–polyisocyanurate (PUR–PIR) foams in both nitrogen and oxygen atmosphere is performed. A sustainable element of the foam is a biopolyol obtained via acid-catalyzed liquefaction of Zostera marina and Enteromorpha Algae biomass. Based on isoconversional analysis and apparent activation energies, several conclusions are obtained. In contradiction...
-
Rheological properties, oxidative and thermal stability, and potential application of biopolyols prepared via two-step process from crude glycerol
PublicationIn this work, previously synthesized biopolyols were analyzed in terms of their rheological and thermal properties, very important from the technological point of view. For better evaluation of performed synthesis, the influence of its time and temperature on the properties of biopolyols was determined. In the end, obtained materials were used to prepare rigid polyurethane-polyisocyanurate (PUR-PIR) foams, to evaluate their potential...