Filters
total: 1261
filtered: 881
Search results for: bounded-degree graphs
-
The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones
PublicationGiven a graph G, a spanning subgraph H of G and an integer λ>=2, a λ-backbone coloring of G with backbone H is a vertex coloring of G using colors 1, 2, ..., in which the color difference between vertices adjacent in H is greater than or equal to lambda. The backbone coloring problem is to find such a coloring with maximum color that does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree...
-
Sum Coloring of Bipartite Graphs with Bounded Degree
Publication -
Sum coloring of bipartite graphs with bounded degree.
PublicationArtykuł poświęcony jest złożoności obliczeniowej zagadnienia sumacyjnego kolorowania grafów dwudzielnych o ograniczonym stopniu. Zawiera dowód tego, że sumacyjne kolorowanie grafów dwudzielnych stopnia mniejszego równego 5 jest NP-zupełne oraz opis wielomianowego algorytmu, który optymalnie sumacyjnie koloruje grafy dwudzielne podkubiczne.
-
Edge-chromatic sum of trees and bounded cyclicity graphs
Publication -
Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs
Publication -
Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs
PublicationW artykule rozważamy listowo-kosztowe kolorowanie wierzchołków i krawędzi grafu w modelu wierzchołkowym, krawędziowym, totalnym i pseudototalnym. Stosujemy programowanie dynamiczne w celu otrzymania algorytmów wielomianowych dla drzew. Następnie uogólniamy to podejście na dowolne grafy z ograniczonymi liczbami cyklomatycznymi i na ich multikolorowania.
-
The complexity of the T-coloring problem for graphs with small degree
Publication -
Packing [1,Delta]-factors in graphs of small degree
PublicationRozważano problem znalezienia w grafie zadanej liczby k krawędziowo rozłącznych [1,Delta]-faktorów, gdzie Delta oznacza stopień grafu. Problem ten można rozwiązać w czasie liniowym dla k=2, jest on jednak NP-trudny dla każdego k>=3. Pokazano, że wariant minimalizacjny problemu dla k=2 jest NP-trudny dla grafów planarnych podkubicznych, jednak w ogólności istnieje algorytm (42 Delta - 30) / (35 Delta - 21) - aproksymacyjny.
-
The complexity of the T-coloring problem for graphs with small degree.
PublicationW pracy ustalono złożoność obliczeniową problemu optymalnego kolorowania grafów o ustalonym stopniu.
-
The complexity of the L(p,q)-labeling problem for bipartite planar graphs of small degree
PublicationW pracy pokazano, że problem L(p,q)-kolorowania przy użyciu ''t'' kolorów jest NP-zupełny nawet w wersji ograniczonej do grafów planarnych dwudzielnych małego stopnia, nawet dla stosunkowo niewielkich wartości ''t''. Jako wniosek z uzyskanych wyników stwierdzono, że problem L(2,1)-kolorowania grafów planarnych przy użyciu 4 kolorów jest NP-zupełny, a także że problem L(p,q)-kolorowania grafów o maksymalnym stopniu 4 jest NP-zupełny...
-
Edge and Pair Queries-Random Graphs and Complexity
PublicationWe investigate two types of query games played on a graph, pair queries and edge queries. We concentrate on investigating the two associated graph parameters for binomial random graphs, and showing that determining any of the two parameters is NP-hard for bounded degree graphs.
-
Algorithms for testing security in graphs
PublicationIn this paper we propose new algorithmic methods giving with the high probability the correct answer to the decision problem of security in graphs. For a given graph G and a subset S of a vertex set of G we have to decide whether S is secure, i.e. every subset X of S fulfils the condition: |N[X] \cap S| >= |N[X] \ S|, where N[X] is a closed neighbourhood of X in graph G. We constructed a polynomial time property pseudotester based...
-
Strategic balance in graphs
PublicationFor a given graph G, a nonempty subset S contained in V ( G ) is an alliance iff for each vertex v ∈ S there are at least as many vertices from the closed neighbourhood of v in S as in V ( G ) − S. An alliance is global if it is also a dominating set of G. The alliance partition number of G was defined in Hedetniemi et al. (2004) to be the maximum number of sets in a partition of V ( G ) such that each set is an alliance. Similarly,...
-
A 27/26-approximation algorithm for the chromatic sum coloring of bipartitegraphs
PublicationWe consider the CHROMATIC SUM PROBLEM on bipartite graphs which appears to be much harder than the classical CHROMATIC NUMBER PROBLEM. We prove that the CHROMATIC SUM PROBLEM is NP-complete on planar bipartite graphs with Delta less than or equal to 5, but polynomial on bipartite graphs with Delta less than or equal to 3, for which we construct an O(n(2))-time algorithm. Hence, we tighten the borderline of intractability for this...
-
Scheduling of identical jobs with bipartite incompatibility graphs on uniform machines. Computational experiments
PublicationWe consider the problem of scheduling unit-length jobs on three or four uniform parallel machines to minimize the schedule length or total completion time. We assume that the jobs are subject to some types of mutual exclusion constraints, modeled by a bipartite graph of a bounded degree. The edges of the graph correspond to the pairs of jobs that cannot be processed on the same machine. Although the problem is generally NP-hard,...
-
Exploiting multi-interface networks: Connectivity and Cheapest Paths
PublicationLet G = (V,E) be a graph which models a set of wireless devices (nodes V) that can communicate by means of multiple radio interfaces, according to proximity and common interfaces (edges E). The problem of switching on (activating) the minimum cost set of interfaces at the nodes in order to guarantee the coverage of G was recently studied. A connection is covered (activated) when the endpoints of the corresponding edge share at...
-
Approximation algorithms for job scheduling with block-type conflict graphs
PublicationThe problem of scheduling jobs on parallel machines (identical, uniform, or unrelated), under incompatibility relation modeled as a block graph, under the makespan optimality criterion, is considered in this paper. No two jobs that are in the relation (equivalently in the same block) may be scheduled on the same machine in this model. The presented model stems from a well-established line of research combining scheduling theory...
-
Edge coloring of graphs of signed class 1 and 2
PublicationRecently, Behr (2020) introduced a notion of the chromatic index of signed graphs and proved that for every signed graph (G, σ) it holds that ∆(G) ≤ χ′(G,σ) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of G and χ′ denotes its chromatic index. In general, the chromatic index of (G, σ) depends on both the underlying graph G and the signature σ. In the paper we study graphs G for which χ′(G, σ) does not depend on σ. To this aim we...
-
Global defensive secure structures
PublicationLet S ⊂ V (G) for a given simple non-empty graph G. We define for any nonempty subset X of S the predicate SECG,S(X) = true iff |NG[X]∩S| ≥ |NG[X]\S|. Let H be a non-empty family of graphs such that for each vertex v ∈ V (G) there is a subgraph H of G containing v and isomorphic to a member of H. We introduce the concept of H-alliance extending the concept of global defensive secure structures. By an H-alliance in a graph G we...
-
No-Wait & No-Idle Open Shop Minimum Makespan Scheduling with Bioperational Jobs
PublicationIn the open shop scheduling with bioperational jobs each job consists of two unit operations with a delay between the end of the first operation and the beginning of the second one. No-wait requirement enforces that the delay between operations is equal to 0. No-idle means that there is no idle time on any machine. We model this problem by the interval incidentor (1, 1)-coloring (IIR(1, 1)-coloring) of a graph with the minimum...
-
2-outer-independent domination in graphs
PublicationWe initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...
-
Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees
PublicationAn edge coloring of a graph G is called interval edge coloring if for each v ∈ V(G) the set of colors on edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by χ'_i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite graph G is called (α,β)-biregular...
-
Computational aspects of greedy partitioning of graphs
PublicationIn this paper we consider a variant of graph partitioning consisting in partitioning the vertex set of a graph into the minimum number of sets such that each of them induces a graph in hereditary class of graphs P (the problem is also known as P-coloring). We focus on the computational complexity of several problems related to greedy partitioning. In particular, we show that given a graph G and an integer k deciding if the greedy...
-
Cops, a fast robber and defensive domination on interval graphs
PublicationThe game of Cops and ∞-fast Robber is played by two players, one controlling c cops, the other one robber. The players alternate in turns: all the cops move at once to distance at most one each, the robber moves along any cop-free path. Cops win by sharing a vertex with the robber, the robber by avoiding capture indefinitely. The game was proposed with bounded robber speed by Fomin et al. in “Pursuing a fast robber on a graph”,...
-
On Computational Aspects of Greedy Partitioning of Graphs
PublicationIn this paper we consider a problem of graph P-coloring consisting in partitioning the vertex set of a graph such that each of the resulting sets induces a graph in a given additive, hereditary class of graphs P. We focus on partitions generated by the greedy algorithm. In particular, we show that given a graph G and an integer k deciding if the greedy algorithm outputs a P-coloring with a least k colors is NP-complete for an infinite...
-
On the size of identifying codes in triangle-free graphs
PublicationIn an undirected graph G, a subset C⊆V(G) such that C is a dominating set of G, and each vertex in V(G) is dominated by a distinct subset of vertices from C, is called an identifying code of G. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph G, let gammaID(G) be the minimum cardinality of an identifying code in G. In this paper, we show that for any connected...
-
A note on polynomial algorithm for cost coloring of bipartite graphs with Δ ≤ 4
PublicationIn the note we consider vertex coloring of a graph in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of coloring is the sum of costs incurred at each vertex. We show that the minimum cost coloring problem for n-vertex bipartite graph of degree ∆≤4 can be solved in O(n^2) time. This extends Jansen’s result [K.Jansen,The optimum cost chromatic partition problem, in:...
-
Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs
PublicationWe study the problem of rendezvous of two mobile agents starting at distinct locations in an unknown graph. The agents have distinct labels and walk in synchronous steps. However the graph is unlabelled and the agents have no means of marking the nodes of the graph and cannot communicate with or see each other until they meet at a node. When the graph is very large we want the time to rendezvous to be independent of the graph size...
-
2-Coloring number revisited
Publication2-Coloring number is a parameter, which is often used in the literature to bound the game chromatic number and other related parameters. However, this parameter has not been precisely studied before. In this paper we aim to fill this gap. In particular we show that the approximation of the game chromatic number by the 2-coloring number can be very poor for many graphs. Additionally we prove that the 2-coloring number may grow...
-
An Efficient Noisy Binary Search in Graphs via Median Approximation
PublicationConsider a generalization of the classical binary search problem in linearly sorted data to the graph-theoretic setting. The goal is to design an adaptive query algorithm, called a strategy, that identifies an initially unknown target vertex in a graph by asking queries. Each query is conducted as follows: the strategy selects a vertex q and receives a reply v: if q is the target, then =, and if q is not the target, then v is a...
-
The complexity of bicriteria tree-depth
PublicationThe tree-depth problem can be seen as finding an elimination tree of minimum height for a given input graph G. We introduce a bicriteria generalization in which additionally the width of the elimination tree needs to be bounded by some input integer b. We are interested in the case when G is the line graph of a tree, proving that the problem is NP-hard and obtaining a polynomial-time additive 2b-approximation algorithm. This particular...
-
A Framework for Searching in Graphs in the Presence of Errors
PublicationWe consider a problem of searching for an unknown target vertex t in a (possibly edge-weighted) graph. Each vertex-query points to a vertex v and the response either admits that v is the target or provides any neighbor s of v that lies on a shortest path from v to t. This model has been introduced for trees by Onak and Parys [FOCS 2006] and for general graphs by Emamjomeh-Zadeh et al. [STOC 2016]. In the latter, the authors provide...
-
Acoustic Hysteresis in Flows with Different Kinds of Relaxation and Attenuation
PublicationGraphs in the thermodynamic plane acoustic pressure versus excess acoustic density representing acoustic hysteresis, are considered as indicators of relaxation processes, equilibrium parameters of a flow, and kinds of wave exciters. Some flows with deviation from adiabaticity are examined: the Newtonian flow of a thermocon- ducting gas, the flow of a gas with vibrational relaxation, the flow of liquid electrolyte with a chemical...
-
On Tradeoffs Between Width- and Fill-like Graph Parameters
PublicationIn this work we consider two two-criteria optimization problems: given an input graph, the goal is to find its interval (or chordal) supergraph that minimizes the number of edges and its clique number simultaneously. For the interval supergraph, the problem can be restated as simultaneous minimization of the path width pw(G) and the profile p(G) of the input graph G. We prove that for an arbitrary graph G and an integer t ∈ {1,...
-
Collision-Free Network Exploration
PublicationA set of mobile agents is placed at different nodes of a n-node network. The agents synchronously move along the network edges in a collision-free way, i.e., in no round may two agents occupy the same node. In each round, an agent may choose to stay at its currently occupied node or to move to one of its neighbors. An agent has no knowledge of the number and initial positions of other agents. We are looking for the shortest possible...
-
Graph Decomposition for Memoryless Periodic Exploration
PublicationWe consider a general framework in which a memoryless robot periodically explores all the nodes of a connected anonymous graph by following local information available at each vertex. For each vertex v, the endpoints of all edges adjacent to v are assigned unique labels within the range 1 to deg (v) (the degree of v). The generic exploration strategy is implemented using a right-hand-rule transition function: after entering vertex...
-
Bounded solutions of odd nonautonomous ODE
PublicationBorsuk-Ulam type argument is used in order to prove exstence of nontrivial bounded solutions to some nonautonomous differential euations which are odd with respect to the spatial variable. A Poincare compactification trick is also applied.
-
Total Domination Versus Domination in Cubic Graphs
PublicationA dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...
-
Dynamic F-free Coloring of Graphs
PublicationA problem of graph F-free coloring consists in partitioning the vertex set of a graph such that none of the resulting sets induces a graph containing a fixed graph F as an induced subgraph. In this paper we consider dynamic F-free coloring in which, similarly as in online coloring, the graph to be colored is not known in advance; it is gradually revealed to the coloring algorithm that has to color each vertex upon request as well...
-
Brief Announcement: Energy Constrained Depth First Search
PublicationDepth first search is a natural algorithmic technique for constructing a closed route that visits all vertices of a graph. The length of such route equals, in an edge-weighted tree, twice the total weight of all edges of the tree and this is asymptotically optimal over all exploration strategies. This paper considers a variant of such search strategies where the length of each route is bounded by a positive integer B (e.g. due...
-
Independent Domination Subdivision in Graphs
PublicationA set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...
-
Dynamic coloring of graphs
PublicationDynamics is an inherent feature of many real life systems so it is natural to define and investigate the properties of models that reflect their dynamic nature. Dynamic graph colorings can be naturally applied in system modeling, e.g. for scheduling threads of parallel programs, time sharing in wireless networks, session scheduling in high-speed LAN's, channel assignment in WDM optical networks as well as traffic scheduling. In...
-
Some variations of perfect graphs
PublicationWe consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...
-
Double bondage in graphs
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by gamma_d(G), is the minimum cardinality of a double dominating set of G. The double bondage number of G, denoted by b_d(G), is the minimum cardinality among all sets...
-
Interval incidence coloring of bipartite graphs
PublicationIn this paper we study the problem of interval incidence coloring of bipartite graphs. We show the upper bound for interval incidence coloring number (χii) for bipartite graphs χii≤2Δ, and we prove that χii=2Δ holds for regular bipartite graphs. We solve this problem for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5 or 6 coloring, and we construct a linear time exact algorithm for subcubic...
-
Deterministic rendezvous of asynchronous bounded-memory agents in polygonal terrains
PublicationTwo mobile agents, modeled as points starting at differentlocations of an unknown terrain, have to meet. The terrain is a polygon with polygonal holes. We consider two versions of this rendezvous problem: exact RV, when the points representing the agents have to coincide at some time, and epsilon-RV, when these points have to get at distance less than epsilon in the terrain. In any terrain, each agent chooses its trajectory, but...
-
Global edge alliances in graphs
PublicationIn the paper we introduce and study a new problem of finding a minimum global edge alliance in a graph which is related to the global defensive alliance (Haynes et al., 2013; Hedetniemi, 2004) and the global defensive set (Lewoń et al., 2016). We proved the NP-completeness of the global edge alliance problem for subcubic graphs and we constructed polynomial time algorithms for trees. We found the exact values of the size of the...
-
Some Progress on Total Bondage in Graphs
PublicationThe total bondage number b_t(G) of a graph G with no isolated vertex is the cardinality of a smallest set of edges E'⊆E(G) for which (1) G−E' has no isolated vertex, and (2) γ_t(G−E')>γ_t(G). We improve some results on the total bondage number of a graph and give a constructive characterization of a certain class of trees achieving the upper bound on the total bondage number.
-
A NEW MASTER'S DEGREE PROGRAM IN GEODESY
PublicationFaculty of Civil and Environmental Engineering (WILiS) at Gdansk University of Technology (GUT) offers studies in the fields of Geodesy and Cartography. The bachelor program (7 semesters) was started ten years ago in 2009. It provides the student with the basic skills and knowledge in the fields of surveying, geodesy and more generally geomatics and cartography. It is strongly related to expertise knowledge of civil building (geodetic...
-
2-bondage in graphs
PublicationA 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...