Filters
total: 64
Search results for: TRUST REGION
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublicationIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublicationThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublicationSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
Optimization of the Hardware Layer for IoT Systems using a Trust Region Method with Adaptive Forward Finite Differences
PublicationTrust-region (TR) algorithms represent a popular class of local optimization methods. Owing to straightforward setup and low computational cost, TR routines based on linear models determined using forward finite differences (FD) are often utilized for performance tuning of microwave and antenna components incorporated within the Internet of Things systems. Despite usefulness for design of complex structures, performance of TR methods...
-
Reduced-cost constrained miniaturization of wideband antennas using improved trust-region gradient search with repair step
PublicationIn the letter, an improved algorithm for electromagnetic (EM)-driven size reduction of wideband antennas is proposed. Our methodology utilizes variable-fidelity EM simulation models, auxiliary polynomial regression surrogates, as well as multi-point response correction. The constraint handling is implicit, using penalty functions. The core optimization algorithm is a trust-region gradient search with a repair step added in order...
-
Reduced-cost electromagnetic-driven optimisation of antenna structures by means of trust-region gradient-search with sparse Jacobian updates
PublicationNumerical optimisation plays more and more important role in the antenna design. Because of lack of design-ready theoretical models, electromagnetic (EM)-simulation-driven adjustment of geometry parameters is a necessary step of the design process. At the same time, traditional parameter sweeping cannot handle complex topologies and large number of design variables. On the other hand, high computational cost of the conventional...
-
Design centering of compact microwave components using response features and trust regions
PublicationFabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material parameters or operating conditions, are detrimental to the performance of microwave circuits. Mitigating their impact requires accounting for possible parameter deviations already at the design stage. This involves optimization of appropriately defined statistical figures of merit such as yield. Alt-hough important, robust (or tolerance-aware)...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublicationIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Numerical optimization of planar antenna structures using trust-region algorithm with adaptively adjusted finite differences
Open Research DataThe dataset contains initial designs and optimization results for three planar structures that include quasi-patch antenna for WLAN applications, compact spline-parameterized monopole dedicated for ultra-wideband applications, as well as rectifier for energy harvesting with enhanced bandwidth. The numerical results for the first two structures are also...
-
Specification-Oriented Automatic Design of Topologically Agnostic Antenna Structure
PublicationDesign of antennas for modern applications is a challenging task that combines cognition-driven development of topology intertwined with tuning of its parameters using rigorous numerical optimization. However, the process can be streamlined by neglecting the engineering insight in favor of automatic de-termination of structure geometry. In this work, a specification-oriented design of topologically agnostic antenna is considered....
-
On EM-driven size reduction of antenna structures with explicit constraint handling
PublicationSimulation-driven miniaturization of antenna components is a challenging task mainly due to the presence of expensive constraints, evaluation of which involves full-wave electromagnetic (EM) analysis. The recommended approach is implicit constraint handling using penalty functions, which, however, requires a meticulous selection of penalty coefficients, instrumental in ensuring optimization process reliability. This paper proposes...
-
Fast Antenna Optimization Using Gradient Monitoring and Variable-Fidelity EM Models
PublicationAccelerated simulation-driven design optimization of antenna structures is proposed. Variable-fidelity electromagnetic (EM) analysis is used as well as the trust-region framework with limited sensitivity updates. The latter are controlled by monitoring the changes of the antenna response gradients. Our methodology is verified using three compact wideband antennas. Comprehensive benchmarking demonstrates its superiority over both...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Dual-band antenna with improved gain for WLAN and ISM applications
PublicationIn this Letter, a dual-band antenna with an improved gain is proposed. The structure features 9.7 and 10.4 dBi gain within 2.4 GHz to 2.5 GHz and 5 GHz to 6 GHz bands, respectively. This makes it suitable for WLAN and ISM applications. The structure comprises an asymmetrical pair of radiators and slots suspended over a reflector. The antenna is optimised in a two-stage process using a trust-region-based gradient search algorithm....
-
Accelerated Gradient-Based Optimization of Antenna Structures Using Multi-Fidelity Simulations and Convergence-Based Model Management Scheme
PublicationThe importance of numerical optimization has been steadily growing in the design of contemporary antenna structures. The primary reason is the increasing complexity of antenna topologies, [ a typically large number of adjustable parameters that have to be simultaneously tuned. Design closure is no longer possible using traditional methods, including theoretical models or supervised parameter sweeping. To ensure reliability, optimization...
-
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications
PublicationDesign of ultra-wideband antennas for in-door localization applications is a challenging task. It involves development of geometry that maintains appropriate balance between the size and performance. In this work, a topologically-flexible monopole has been generated using a stratified framework which embeds a gradient-based trust-region (TR) optimization algorithm in a meta-loop that gradually increases the structure dimensionality....
-
Low-fidelity model considerations for simulation-based optimisation of miniaturised wideband antennas
PublicationHere, variable-fidelity electromagnetic (EM)-based design optimisation of miniaturised antennas is discussed. The authors focus on an appropriate selection of discretisation density of the low-fidelity EM model, which results in good performance of the optimisation algorithm in terms of its computational complexity and reliability. Trust-region gradient search with low-fidelity model corrected by means of non-linear frequency scaling...
-
On low-fidelity models for variable-fidelity simulation-driven design optimization of compact wideband antennas
PublicationThe paper addresses simulation-driven design optimization of compact antennas involving variable-fidelity electromagnetic (EM) simulation models. Comprehensive investigations are carried out concerning selection of the coarse model discretization density. The effects of the low-fidelity model setup on the reliability and computational complexity of the optimization process are determined using a benchmark set of three ultra-wideband...
-
Rapid design closure of linear microstrip antenna array apertures using response features
PublicationA simple yet reliable approach to a rapid design closure of linear antenna array apertures at the electromagnetic (EM)-simulation level is proposed. Our methodology exploits an underlying array factor (AF) model suitably corrected by means of characteristic points (angles and levels) of the radiation pattern of the EM model of the antenna array aperture. This conveniently allows for controlling both the side lobe levels...
-
TR-Based Antenna Design with Forward FD: The Effects of Step Size on the Optimization Performance
PublicationNumerical methods are important tools for design of modern antennas. Trust-region (TR) methods coupled with data-efficient surrogates based on finite differentiation (FD) represent a popular class of antenna design algorithms. However, TR performance is subject to FD setup, which is normally determined a priori based on rules-of-thumb. In this work, the effect of FD perturbations on the performance of TR-based design is evaluated...
-
Reduced-cost design closure of antennas by means of gradient search with restricted sensitivity update
PublicationDesign closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region...
-
Buckling and shape control of prestressable trusses using optimum number of actuators
PublicationThis paper describes a method to control the nodal displacement of prestressable truss structures within the desired domains. At the same time, the stress in all members is unleashed to take any value between the allowable tensile stress and critical buckling stress. The shape and stresses are controlled by actuating the most active members. The technique considers the members’ initial crookedness, residual stresses, and slenderness...
-
EM-driven topology evolution for bandwidth enhancement of hybrid quadrature patch couplers
PublicationA broad operational bandwidth is one of the key performance figures of hybrid patch couplers. Due to the lack of systematic design procedures, bandwidth enhancement is normally obtained through manual modifications of the structure geometry. In this work, an optimization-based topology evolution for EM-driven design of patch couplers with enhanced bandwidth has been proposed. The method exploits a novel spline-based EM model where...
-
Model Correction and Optimization Framework for Expedited EM-Driven Surrogate-Assisted Design of Compact Antennas
PublicationDesign of compact antennas is a numerically challenging process that heavily relies on electromagnetic (EM) simulations and numerical optimization algorithms. For reliability of simulation results, EM models of small radiators often include connectors which—despite being components with fixed dimensions—significantly contribute to evaluation cost. In this letter, a response correction method for antenna models without connector,...
-
Efficient Multi-Fidelity Design Optimization of Microwave Filters Using Adjoint Sensitivity
PublicationA simple and robust algorithm for computationally efficient design optimiza-tion of microwave filters is presented. Our approach exploits a trust-region (TR)-based algorithm that utilizes linear approximation of the filter response obtained using adjoint sensitivity. The algorithm is sequentially executed on a family of electromagnetic (EM)-simulated models of different fidelities, starting from a coarse-discretization one, and...
-
A design framework for rigorous constrained EM-driven optimization of miniaturized antennas with circular polarization
PublicationCompact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves sequential optimization...
-
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublicationParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
Kriging metamodels and design re‐utilization for fast parameter tuning of antenna structures
PublicationThe paper addresses the problem of computationally efficient electromagnetic (EM)‐driven design closure of antenna structures. The foundations of the presented approach are fast kriging interpolation metamodels, utilized for two purposes: (a) producing a good starting point for further parameter tuning, and (b) yielding a reasonable Jacobian matrix estimate to jump‐start the optimization procedure. The models are rendered using...
-
Expedited optimization of antenna input characteristics with adaptive Broyden updates
PublicationSimulation-driven adjustment of geometry and/or material parameters is a necessary step in the design of contemporary antenna structures. Due to their topological complexity, other means, such as supervised parameter sweeping, does not usually lead to satisfactory results. On the other hand, rigorous numerical optimization is computationally expensive due to a high cost of underlying full-wave electromagnetic (EM) analyses, otherwise...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublicationAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...
-
Using Minimum Actuators to Control Shape and Stress of a Double Layer Spherical Model Under Gravity and Lateral Loadings
PublicationSpherical domes are picturesque structures built in developed countries to attract tourists. Due to horizontal and vertical overloading, the structures’ attractive shapes may be disturbed, and some members' stress may exceed the elastic level. In this paper, the shape and stress of a deformed double-layer spherical numerical model due to simultaneous lateral and vertical loadings are controlled, meanwhile, the number of actuators...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
Direct Constraint Control for EM-Based Miniaturization of Microwave Passives
PublicationHandling constraints imposed on physical dimensions of microwave circuits has become an important design consideration over the recent years. It is primarily fostered by the needs of emerging application areas such as 5G mobile communications, internet of things, or wearable/implantable devices. The size of conventional passive components is determined by the guided wavelength, and its reduction requires topological modifications,...
-
Numerically Efficient Miniaturization-Oriented Optimization of an Ultra-Wideband Spline-Parameterized Antenna
PublicationDesign of ultra-wideband radiators for modern handheld applications is a challenging task that involves not only selection of an appropriate topology, but also its tuning oriented towards balancing the electrical performance and size. In this work, a low-cost design of a compact, broadband, spline-parameterized monopole antenna has been considered. The framework used for the structure design implements trust-region-based methods,...
-
Fast EM-Driven Parameter Tuning of Microwave Circuits with Sparse Sensitivity Updates via Principal Directions
PublicationNumerical optimization has become more important than ever in the design of microwave components and systems, primarily as a consequence of increasing performance demands and growing complexity of the circuits. As the parameter tuning is more and more often executed using full-wave electromagnetic (EM) models, the CPU cost of the overall process tends to be excessive even for local optimization. Some ways of alleviating these issues...
-
Computationally-efficient design optimisation of antennas by accelerated gradient search with sensitivity and design change monitoring
PublicationElectromagnetic (EM) simulation tools are of primary importance in the design of contemporary antennas. The necessity of accurate performance evaluation of complex structures is a reason why the final tuning of antenna dimensions, aimed at improvement of electrical and field characteristics, needs to be based on EM analysis. Design automation is highly desirable and can be achieved by coupling EM solvers with numerical optimisation...
-
Design and Optimization of Metamaterial-Based 5G Millimeter Wave Antenna for Gain Enhancement
PublicationIn this brief, a low profile, broadband, high-gain antenna array based on optimized metamaterials (MMs) with dual-beam radiation is reported for 5G millimeters wave (mm-wave) applications. The design is a simple bow tie operating at a 5G band of 28 GHz. It consists of two bow ties with substrate integrated waveguide (SIW)-based power splitter. A broad impedance bandwidth of 26.3−29.8 GHz is obtained by appropriately combining the...
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
PublicationManufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective...
-
Selection of circuit geometry for miniaturized microwave components based on concurrent optimization of performance and layout area
PublicationThe paper presents a framework for automated EM-driven circuit geometry selection of miniaturized microwave components. Selection of a particular layout is based directly on miniaturization rates achieved for a set of candidate circuit geometries. Size reduction of the considered structures is obtained by replacing their main building blocks (i.e., conventional transmission lines) with slow-wave composite cells and meander lines....
-
Wideband High-Gain Low-Profile Series-Fed Antenna Integrated with Optimized Metamaterials for 5G millimeter Wave Applications
PublicationThis paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a...
-
Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design
PublicationParameter optimization, also referred to as design closure, is imperative in the development of modern antennas. Theoretical considerations along with rough dimension adjustment through supervised parameter sweeping can only yield initial designs that need to be further tuned to boost the antenna performance. The major challenges include handling of multi-dimensional parameter spaces while accounting for several objectives and...
-
Expedited antenna optimization with numerical derivatives and gradient change tracking
PublicationDesign automation has been playing an increasing role in the development of novel antenna structures for various applications. One of its aspects is electromagnetic (EM)-driven design closure, typically applied upon establishing the antenna topology, and aiming at adjustment of geometry parameters to boost the performance figures as much as possible. Parametric optimization is often realized using local methods given usually reasonable...
-
Multi-fidelity aerodynamic design trade-off exploration using point-by-point Pareto set identification
PublicationAerodynamic design is inherently a multi-objective optimization (MOO) problem. Determining the best possible trade-offs between conflicting aerodynamic objectives can be computationally challenging when carried out directly at the level of high-fidelity computational fluid dynamics simulations. This paper presents a computationally cheap methodology for exploration of aerodynamic design trade-offs. In particular, point-by-point...
-
Design and Optimization of Metamaterial-based Highly-isolated MIMO Antenna with High Gain and Beam Tilting Ability for 5G Millimeter Wave Applications
PublicationThis paper presents a wideband multiple-input multiple-output (MIMO) antenna with high gain and isolation, as well as beam tilting capability, for 5G millimeter wave (MMW) applications. A single bow-tie antenna fed by a substrate-integrated waveguide (SIW) is proposed to cover the 28 GHz band (26.5–29.5 GHz) with a maximum gain of 6.35 dB. To enhance the gain, H-shaped metamaterial (MM)-based components are incorporated into the...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Design and Optimization of Metamaterial-Based Dual-Band 28/38 GHz 5G MIMO Antenna with Modified Ground for Isolation and Bandwidth Improvement
PublicationThis letter presents a high-isolation dual-band multiple-input multiple-output (MIMO) antenna based on the ground plane modification and optimized metamaterials (MMs) for 5G millimeter-wave applications. The antenna is a monopole providing a dual-band response at 5G 28/38 bands with a small physical size (4.8 × 2.9 × 0.762 mm3, excluding the feeding line). The MIMO consists of two symmetric radiating elements arranged adjacently...
-
Optimum number of actuators to minimize the cross-sectional area of prestressable cable and truss structures
PublicationThis paper describes a new computational method for determining the optimum number of actuators to design the optimal and economic cross-sectional area of pin-jointed assemblies based on the conventional force method. The most active members are selected to be prestressed to redistribute stress in the whole structure, resulting in regulating the internal force of bars that face high stress. Reducing stress in critical members allows...